Skip to main content

Robustness of the Parsimonious Reconciliation Method in Cophylogeny

Part of the Lecture Notes in Computer Science book series (LNBI,volume 9702)

Abstract

The aim of this paper is to explore the robustness of the parsimonious host-symbiont tree reconciliation method under editing or small perturbations of the input. The editing involves making different choices of unique symbiont mapping to a host in the case where multiple associations exist. This is made necessary by the fact that no tree reconciliation method is currently able to handle such associations. The analysis performed could however also address the problem of errors. The perturbations are re-rootings of the symbiont tree to deal with a possibly wrong placement of the root specially in the case of fast-evolving species. In order to do this robustness analysis, we introduce a simulation scheme specifically designed for the host-symbiont cophylogeny context, as well as a measure to compare sets of tree reconciliations, both of which are of interest by themselves.

Keywords

  • Cophylogeny
  • Parsimony
  • Event-based methods
  • Robustness
  • Measure for tree reconciliation comparison

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

References

  1. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinf. 28(12), i283–i291 (2012)

    CrossRef  Google Scholar 

  2. Baudet, C., Donati, B., Sinaimeri, B., Crescenzi, P., Gautier, C., Matias, C., Sagot, M.F.: Cophylogeny reconstruction via an approximate Bayesian computation. Syst. Biol. 64(3), 416–431 (2015)

    CrossRef  Google Scholar 

  3. Charleston, M.A.: Jungles: a new solution to the host/parasite phylogeny reconciliation problem. Math. Biosci. 149(2), 191–223 (1998)

    MathSciNet  CrossRef  Google Scholar 

  4. Charleston, M.A.: Recent results in cophylogeny mapping. Adv. Parasitol. 54, 303–330 (2003)

    CrossRef  Google Scholar 

  5. Conow, C., Fielder, D., Ovadia, Y., Libeskind-Hadas, R.: Jane: a new tool for the cophylogeny reconstruction problem. Algo. Mol. Biol. 5(16), 1–10 (2010)

    Google Scholar 

  6. Donati, B., Baudet, C., Sinaimeri, B., Crescenzi, P., Sagot, M.F.: EUCALYPT: efficient tree reconciliation enumerator. Algo. Mol. Biol. 10(1), 3 (2014)

    CrossRef  Google Scholar 

  7. Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  8. Górecki, P., Eulenstein, O., Tiuryn, J.: Unrooted tree reconciliation: a unified approach. IEEE/ACM Trans. Comput. Biology Bioinf. 10(2), 522–536 (2013)

    CrossRef  Google Scholar 

  9. Holland, B., Penny, D., Hendy, M.: Outgroup misplacement and phylogenetic inaccuracy under a molecular clock: a simulation study. Syst. Biol. 52(2), 229–238 (2003)

    CrossRef  Google Scholar 

  10. Keller-Schmidt, S., Wieseke, N., Klemm, K., Middendorf, M.: Evaluation of host parasite reconciliation methods using a new approach for cophylogeny generation. Technical report, University of Leipzig (2011). https://www.bioinf.uni-leipzig.de/Publications/PREPRINTS/11-013.pdf

  11. Kosters, W.A., Laros, J.F.J.: Metrics for mining multisets. In: Bramer, M., Coenen, F., Petridis, M. (eds.) Research and Development in Intelligent Systems XXIV, pp. 293–303. Springer, London (2008)

    CrossRef  Google Scholar 

  12. Merkle, D., Middendorf, M.: Reconstruction of the cophylogenetic history of related phylogenetic trees with divergence timing information. Theory Biosci. 123(4), 277–299 (2005)

    CrossRef  Google Scholar 

  13. Merkle, D., Middendorf, M., Wieseke, N.: A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinf. 11(Suppl 1), S60 (2010)

    CrossRef  Google Scholar 

  14. Nei, M., Kumar, S.: Molecular evolution and phylogenetics. Oxford Univ, Press (2000)

    Google Scholar 

  15. Ovadia, Y., Fielder, D., Conow, C., Libeskind-Hadas, R.: The cophylogeny reconstruction problem is NP-complete. J. Comput. Biol. 18(1), 59–65 (2011)

    MathSciNet  CrossRef  Google Scholar 

  16. Page, R.D.M.: Parallel phylogenies: reconstructing the history of host-parasite assemblages. Cladistics 10(2), 155–173 (1994)

    CrossRef  Google Scholar 

  17. Paterson, A.M., Gray, R.D., Clayton, D.H., Moore, J.: Host-parasite co-speciation, host switching, and missing the boat. In: Clayton, D.H., Moore, J. (eds.) Host-parasite evolution: general principles and avian models, pp. 236–250. Oxford University Press, Oxford (1997)

    Google Scholar 

  18. Qiu, Y.L., Lee, J., Whitlock, B.A., Bernasconi-Quadroni, F., Dombrovska, O.: Was the anita rooting of the angiosperm phylogeny affected by long-branch attraction? Mol. Biol. Evol. 18(9), 1745–1753 (2001)

    CrossRef  Google Scholar 

  19. Sanderson, M.J., Shaffer, H.B.: Troubleshooting molecular phylogenetic analyses. Annu. Rev. Ecol. Syst. 33, 49–72 (2002)

    CrossRef  Google Scholar 

  20. Stavrinides, J., Guttman, D.S.: Mosaic evolution of the severe acute respiratory syndrome coronavirus. J. Virol. 78(1), 76–82 (2004)

    CrossRef  Google Scholar 

  21. Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinf. 28(18), i409–i415 (2012)

    CrossRef  Google Scholar 

  22. Swofford, D.L., Olsen, G.J., Waddell, P.J., Hillis, D.M.: Phylogenetic inference. In: Hillis, D.M., Moritz, C., Mable, B.K. (eds.) Molecular systematics, pp. 407–514. Sinauer Associates Inc, Sunderland (1996)

    Google Scholar 

  23. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 8(2), 517–535 (2011)

    CrossRef  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Christian Gautier for fruitful preliminary discussions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blerina Sinaimeri .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Urbini, L., Sinaimeri, B., Matias, C., Sagot, MF. (2016). Robustness of the Parsimonious Reconciliation Method in Cophylogeny. In: Botón-Fernández, M., Martín-Vide, C., Santander-Jiménez, S., Vega-Rodríguez, M. (eds) Algorithms for Computational Biology. AlCoB 2016. Lecture Notes in Computer Science(), vol 9702. Springer, Cham. https://doi.org/10.1007/978-3-319-38827-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38827-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38826-7

  • Online ISBN: 978-3-319-38827-4

  • eBook Packages: Computer ScienceComputer Science (R0)