Skip to main content

Correlation Between the Cerebral Oxyhaemoglobin Signal and Physiological Signals During Cycling Exercise: A Near-Infrared Spectroscopy Study

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XXXVIII

Abstract

Near-infrared spectroscopy (NIRS) is a widely used noninvasive method for measuring human brain activation based on the cerebral haemodynamic response. However, systemic changes can influence the signal’s parameters. Our study aimed to investigate the relationships between NIRS signals and skin blood flow (SBF) or blood pressure during dynamic movement. Nine healthy volunteers (mean age, 21.3 ± 0.7 years; 6 women) participated in this study. The oxyhaemoglobin (O2Hb) signal, SBF, and mean arterial pressure (MAP) were measured while the volunteers performed multi-step incremental exercise on a bicycle ergometer, at workloads corresponding to 30, 50, and 70 % of peak oxygen consumption (VO2peak) for 5 min. The Pearson’s correlation coefficients for the O2Hb signal and SBF at 50 and 70 % VO2peak were 0.877 (P < 0.01) and −0.707 (P < 0.01), respectively. The correlation coefficients for O2Hb and MAP during warm-up, 30 % VO2peak, and 50 % VO2peak were 0.725 (P < 0.01), 0.472 (P < 0.01), and 0.939 (P < 0.01), respectively. Changes in the state of the cardiovascular system influenced O2Hb signals positively during low and moderate-intensity exercise, whereas a negative relationship was observed during high-intensity exercise. These results suggest that the relationship between the O2Hb signal and systemic changes is affected by exercise intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyai I, Tanabe HC, Sase I et al (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14:1186–1192

    Article  CAS  PubMed  Google Scholar 

  2. Bhambhani Y, Malik R, Mookerjee S (2007) Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respir Physiol Neurobiol 156:196–202

    Article  PubMed  Google Scholar 

  3. Rupp T, Perrey S (2008) Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol 102:153–163

    PubMed  Google Scholar 

  4. Boas DA, Gaudette T, Strangman G et al (2001) The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage 13:76–90

    Article  CAS  PubMed  Google Scholar 

  5. Tsubaki A, Takai H, Kojima S et al (2016) Changes in cortical oxyhaemoglobin signal during low-intensity cycle ergometer activity: a near-infrared spectroscopy study. Adv Exp Med Biol 876:79–85

    Article  CAS  PubMed  Google Scholar 

  6. Tamura M, Hoshi Y, Okada F (1997) Localized near-infrared spectroscopy and functional optical imaging of brain activity. Philos Trans R Soc Lond B Biol Sci 352:737–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Obrig H, Wolf T, Doge C et al (1996) Cerebral oxygenation changes during motor and somatosensory stimulation in humans, as measured by near-infrared spectroscopy. Adv Exp Med Biol 388:219–224

    Article  CAS  PubMed  Google Scholar 

  8. Niederhauser BD, Rosenbaum BP, Gore JC et al (2008) A functional near-infrared spectroscopy study to detect activation of somatosensory cortex by peripheral nerve stimulation. Neurocrit Care 9:31–36

    Article  PubMed  Google Scholar 

  9. Takahashi T, Takikawa Y, Kawagoe R et al (2011) Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task. Neuroimage 57:991–1002

    Article  PubMed  Google Scholar 

  10. Miyazawa T, Horiuchi M, Komine H et al (2013) Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise. Eur J Appl Physiol 113:2841–2848

    Article  CAS  PubMed  Google Scholar 

  11. Minati L, Kress IU, Visani E et al (2011) Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements. J Neurosci Methods 197:283–288

    Article  PubMed  PubMed Central  Google Scholar 

  12. Subudhi AW, Dimmen AC, Roach RC (2007) Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol 103:177–183

    Article  CAS  PubMed  Google Scholar 

  13. Subudhi AW, Miramon BR, Granger ME et al (2009) Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. J Appl Physiol 106:1153–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rooks CR, Thom NJ, McCully KK et al (2010) Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Prog Neurobiol 92:134–135

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Young Scientists (B) from the Japan Society for the Promotion of Science and a Grant-in-Aid for Exploratory Research from the Niigata University of Health and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuhiro Tsubaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tsubaki, A. et al. (2016). Correlation Between the Cerebral Oxyhaemoglobin Signal and Physiological Signals During Cycling Exercise: A Near-Infrared Spectroscopy Study. In: Luo, Q., Li, L., Harrison, D., Shi, H., Bruley, D. (eds) Oxygen Transport to Tissue XXXVIII. Advances in Experimental Medicine and Biology, vol 923. Springer, Cham. https://doi.org/10.1007/978-3-319-38810-6_21

Download citation

Publish with us

Policies and ethics