Aspect-Based Sentiment Analysis on the Web Using Rhetorical Structure Theory

  • Rowan Hoogervorst
  • Erik Essink
  • Wouter Jansen
  • Max van den Helder
  • Kim Schouten
  • Flavius Frasincar
  • Maite Taboada
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9671)

Abstract

Fine-grained sentiment analysis on the Web has received much attention in recent years. In this paper we suggest an approach to Aspect-Based Sentiment Analysis that incorporates structural information of reviews by employing Rhetorical Structure Theory. First, a novel way of determining the context of an aspect is presented, after which a full path analysis is performed on the found context tree to determine the aspect sentiment. Comparing the proposed method to a baseline model, which does not use the discourse structure of the text and solely relies on a sentiment lexicon to assign sentiments, we find that the proposed method consistently outperforms the baseline on three different datasets.

Keywords

Leaf Node Sentiment Analysis Context Tree Aspect Context Sentiment Lexicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors of this paper are supported by the Dutch national program COMMIT.

References

  1. 1.
    Asher, N., Benamara, F., Mathieu, Y.Y.: Appraisal of opinion expressions in discourse. Lingvisticæ Investigationes 32(2), 279–292 (2009)CrossRefGoogle Scholar
  2. 2.
    Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010), vol. 10, pp. 2200–2204 (2010)Google Scholar
  3. 3.
    Bickart, B., Schindler, R.M.: Internet forums as influential sources of consumer information. J. Interact. Mark. 15(3), 31–40 (2001)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Xie, J.: Online consumer review: word-of-mouth as a new element of marketing communication mix. Manage. Sci. 54(3), 477–491 (2008)CrossRefGoogle Scholar
  5. 5.
    Esuli, A., Sebastiani, F.: SentiWordNet: a publicly available lexical resource for opinion mining. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC 2006), vol. 6, pp. 417–422. European Language Resources Association (ELRA) (2006)Google Scholar
  6. 6.
    Feng, V.W., Hirst, G.: Text-level discourse parsing with rich linguistic features. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL 2012), pp. 60–68. Association for Computational Linguistics (2012)Google Scholar
  7. 7.
    Heerschop, B., Goossen, F., Hogenboom, A., Frasincar, F., Kaymak, U., de Jong, F.: Polarity analysis of texts using discourse structure. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM, 2011), pp. 1061–1070. ACM (2011)Google Scholar
  8. 8.
    Hernault, H., Prendinger, H., duVerle, D.A., Ishizuka, M., et al.: HILDA: a discourse parser using support vector machine classification. Dialogue Discourse 1(3), 1–33 (2010)CrossRefGoogle Scholar
  9. 9.
    Hogenboom, A., Frasincar, F., de Jong, F., Kaymak, U.: Using rhetorical structure in sentiment analysis. Commun. ACM 58(7), 69–77 (2015)CrossRefGoogle Scholar
  10. 10.
    Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory, vol. 42. Springer Science & Business Media, Berlin (1993)Google Scholar
  11. 11.
    Kim, S.M., Hovy, E.: Determining the sentiment of opinions. In: Proceedings of the 20th International Conference on Computational Linguistics (COLING 2004). Association for Computational Linguistics (2004)Google Scholar
  12. 12.
    Lascarides, A., Asher, N., Oberlander, J.: Inferring discourse relations in context. In: Proceedings of the 30th Annual Meeting on Association for Computational Linguistics (ACL 1992), pp. 1–8. Association for Computational Linguistics (1992)Google Scholar
  13. 13.
    Lazaridou, A., Titov, I., Sporleder, C.: A Bayesian model for joint unsupervised induction of sentiment, aspect and discourse representations. In: Proceedings of the 51th Annual Meeting of the Association for Computational Linguistics (ACL 2013), pp. 1630–1639. Association for Computational Linguistics (2013)Google Scholar
  14. 14.
    Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. In: Proceedings of the Fifth Annual International Conference on Systems Documentation (SIGDOC 1986), pp. 24–26. ACM (1986)Google Scholar
  15. 15.
    Mann, W.C., Thompson, S.A.: Rhetorical structure theory: toward a functional theory of text organization. Text-Interdisc. J. Study Discourse 8(3), 243–281 (1988)CrossRefGoogle Scholar
  16. 16.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60. Association for Computational Linguistics (2014)Google Scholar
  17. 17.
    Marcu, D.: The rhetorical parsing of natural language texts. In: Proceedings of the Eighth Conference on European Chapter of the Association for Computational Linguistics (EACL 1997) pp. 96–103. Association for Computational Linguistics (1997)Google Scholar
  18. 18.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)CrossRefGoogle Scholar
  19. 19.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002), pp. 79–86. Association for Computational Linguistics (2002)Google Scholar
  20. 20.
    Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: Semeval-2015 task 12: aspect based sentiment analysis. In: Proceedings of the Ninth International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495. Association for Computational Linguistics (2015)Google Scholar
  21. 21.
    Pontiki, M., Papageorgiou, H., Galanis, D., Androutsopoulos, I., Pavlopoulos, J., Manandhar, S.: Semeval-2014 task 4: aspect based sentiment analysis. In: Proceedings of the Eighth International Workshop on Semantic Evaluation (SemEval 2014), pp. 27–35. Association for Computational Linguistics and Dublin City University (2014)Google Scholar
  22. 22.
    Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE Trans. Knowl. Data Eng. 28(3), 813–830 (2016)CrossRefGoogle Scholar
  23. 23.
    Surdeanu, M., Hicks, T., Valenzuela-Escárcega, M.A.: Two practical rhetorical structure theory parsers. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics - Human Language Technologies (NAACL HLT 2015): Software Demonstrations (2015)Google Scholar
  24. 24.
    Taboada, M., Voll, K., Brooke, J.: Extracting sentiment as a function of discourse structure and topicality. Technical report TR 2008–20, Simon Fraser University School of Computing Science (2008). ftp://fas.sfu.ca/pub/cs/TR/2008/CMPT2008-20.pdf
  25. 25.
    Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (ACL 2002), pp. 417–424. Association for Computational Linguistics (2002)Google Scholar
  26. 26.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (HLT 2005), pp. 347–354. Association for Computational Linguistics (2005)Google Scholar
  27. 27.
    Yang, B., Cardie, C.: Context-aware learning for sentence-level sentiment analysis with posterior regularization. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL 2014), pp. 325–335. Association for Computational Linguistics (2014)Google Scholar
  28. 28.
    Zhou, Y.: Fine-grained sentiment analysis with discourse structure. Master’s thesis, Saarland University, Germany (2013). http://lct-master.org/getfile.php?id=783&n=1&dt=TH&ft=pdf&type=TH
  29. 29.
    Zirn, C., Niepert, M., Stuckenschmidt, H., Strube, M.: Fine-grained sentiment analysis with structural features. In: 5th International Joint Conference on Natural Language Processing (IJCNLP 2011), pp. 336–344. Association for Computational Linguistics (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rowan Hoogervorst
    • 1
  • Erik Essink
    • 1
  • Wouter Jansen
    • 1
  • Max van den Helder
    • 1
  • Kim Schouten
    • 1
  • Flavius Frasincar
    • 1
  • Maite Taboada
    • 2
  1. 1.Erasmus University RotterdamRotterdamThe Netherlands
  2. 2.Simon Fraser UniversityBurnabyCanada

Personalised recommendations