Skip to main content

Towards a More Accurate Error Model for BioNano Optical Maps

  • Conference paper
  • First Online:
Book cover Bioinformatics Research and Applications (ISBRA 2016)

Abstract

Next-generation sequencing technologies has advanced our knowledge in genomics by a tremendous step in the past years. On the other hand, there are still critical questions left unanswered due to the intrinsic limitations of short read length. To address this issue, several new sequencing platforms came into view. However, a lack of comprehensive understanding of the sequencing error poses a primary challenge for their optimal use. Here, we focus on optical mapping, a high-throughput laboratory technique that provides long-range information of a genome. Existing error model is based on OpGen maps. It is not clear if the model is also good for BioNano maps. In this paper, we try to provide a more accurate error model for BioNano optical maps based on real data. Due to the limited availability of real datasets, as an indirect validation of our model, we predict the regions that are difficult to cover and compare the predicted results with the empirical results (both simulated and real data) on human chromosomes. The results are promising, with most of the difficult regions correctly predicted. Tested on BioNano maps, our model is more accurate than the most popular existing error model developed based on OpGen maps. Although we may not have captured all possible errors of the technology, our model should provide important insights for the development of downstream analysis tools using BioNano optical maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fragment size distribution mainly depends on the distribution of nicking sites, thus may not be a strong evidence to show the accuracy of an error model.

  2. 2.

    We noticed that the Laplace scale value increases slightly when the fragment length exceeds 20400 bp; however, since the number of samples decreases drastically as the fragment length grows (see the blue curve), it is reasonable to use the scale value of the majority of long fragments in \([4800\,\text {bp}, 20400\,\text {bp})\) to represent the whole.

References

  1. Anantharaman, T.S., Mishra, B., Schwartz, D.C.: Genomics via optical mapping II: ordered restriction maps. J. Comput. Biol. 4(2), 91–118 (1997)

    Article  Google Scholar 

  2. Anantharaman, T.S., Mishra, B., Schwartz, D.C.: Genomics via optical mapping III: contiging genomic dna and variations. In: The Seventh International Conference on Intelligent Systems for Molecular Biology, vol. 7, pp. 18–27. Citeseer (1999)

    Google Scholar 

  3. Das, S.K., Austin, M.D., Akana, M.C., Deshpande, P., Cao, H., Xiao, M.: Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes. Nucleic Acids Res. 38(18), e177 (2010)

    Article  Google Scholar 

  4. Ganapathy, G., Howard, J.T., Ward, J.M., Li, J., Li, B., Li, Y., Xiong, Y., Zhang, Y., Zhou, S., Schwartz, D.C., et al.: High-coverage sequencing and annotated assemblies of the budgerigar genome. GigaScience 3(1), 1–9 (2014)

    Article  Google Scholar 

  5. Hastie, A.R., Dong, L., Smith, A., Finklestein, J., Lam, E.T., Huo, N., Cao, H., Kwok, P.Y., Deal, K.R., Dvorak, J., et al.: Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex aegilops tauschii genome. PloS one 8(2), e55864 (2013)

    Article  Google Scholar 

  6. Kim, Y., Kim, K.S., Kounovsky, K.L., Chang, R., Jung, G.Y., Jo, K., Schwartz, D.C., et al.: Nanochannel confinement: DNA stretch approaching full contour length. Lab Chip 11(10), 1721–1729 (2011)

    Article  Google Scholar 

  7. Lin, H.C., Goldstein, S., Mendelowitz, L., Zhou, S., Wetzel, J., Schwartz, D.C., Pop, M.: Agora: assembly guided by optical restriction alignment. BMC Bioinf. 13(1), 189 (2012)

    Article  Google Scholar 

  8. Mak, A.C., Lai, Y.Y., Lam, E.T., Kwok, T.P., Leung, A.K., Poon, A., Mostovoy, Y., Hastie, A.R., Stedman, W., Anantharaman, T., et al.: Genome-wide structural variation detection by genome mapping on nanochannel arrays. Genetics 202(1), 351–362 (2016)

    Article  Google Scholar 

  9. Meng, X., Benson, K., Chada, K., Huff, E.J., Schwartz, D.C.: Optical mapping of lambda bacteriophage clones using restriction endonucleases. Nat. Genet. 9(4), 432–438 (1995)

    Article  Google Scholar 

  10. Muggli, M.D., Puglisi, S.J., Boucher, C.: Efficient indexed alignment of contigs to optical maps. In: Brown, D., Morgenstern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 68–81. Springer, Heidelberg (2014)

    Google Scholar 

  11. Myers, E.W., Huang, X.: An \(\cal{O}\)(\(n^2\) log \(n\)) restriction map comparison and search algorithm. Bull. Math. Biol. 54(4), 599–618 (1992)

    MATH  Google Scholar 

  12. Nagarajan, N., Read, T.D., Pop, M.: Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics 24(10), 1229–1235 (2008)

    Article  Google Scholar 

  13. Ramirez, M.S., Adams, M.D., Bonomo, R.A., Centrón, D., Tolmasky, M.E.: Genomic analysis of acinetobacter baumannii A118 by comparison of optical maps: identification of structures related to its susceptibility phenotype. Antimicrob. Agents Chemother. 55(4), 1520–1526 (2011)

    Article  Google Scholar 

  14. Ray, M., Goldstein, S., Zhou, S., Potamousis, K., Sarkar, D., Newton, M.A., Esterberg, E., Kendziorski, C., Bogler, O., Schwartz, D.C.: Discovery of structural alterations in solid tumor oligodendroglioma by single molecule analysis. BMC Genomics 14(1), 505 (2013)

    Article  Google Scholar 

  15. Sarkar, D.: On the analysis of optical mapping data. Ph.D. thesis, University of Wisconsin-Madison (2006)

    Google Scholar 

  16. Sarkar, D., Goldstein, S., Schwartz, D.C., Newton, M.A.: Statistical significance of optical map alignments. J. Comput. Biol. 19(5), 478–492 (2012)

    Article  Google Scholar 

  17. Teague, B., Waterman, M.S., Goldstein, S., Potamousis, K., Zhou, S., Reslewic, S., Sarkar, D., Valouev, A., Churas, C., Kidd, J.M., et al.: High-resolution human genome structure by single-molecule analysis. Proc. Natl. Acad. Sci. 107(24), 10848–10853 (2010)

    Article  Google Scholar 

  18. Valouev, A., Li, L., Liu, Y.C., Schwartz, D.C., Yang, Y., Zhang, Y., Waterman, M.S.: Alignment of optical maps. J. Comput. Biol. 13(2), 442–462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Valouev, A., Schwartz, D.C., Zhou, S., Waterman, M.S.: An algorithm for assembly of ordered restriction maps from single DNA molecules. Proc. Natl. Acad. Sci. 103(43), 15770–15775 (2006)

    Article  Google Scholar 

  20. Waterman, M.S., Smith, T.F., Katcher, H.L.: Algorithms for restriction map comparisons. Nucleic Acids Res. 12(1 Part 1), 237–242 (1984)

    Article  Google Scholar 

  21. Zhou, S., Bechner, M.C., Place, M., Churas, C.P., Pape, L., Leong, S.A., Runnheim, R., Forrest, D.K., Goldstein, S., Livny, M., et al.: Validation of rice genome sequence by optical mapping. BMC Genomics 8(1), 278 (2007)

    Article  Google Scholar 

  22. Zhou, S., Deng, W., Anantharaman, T.S., Lim, A., Dimalanta, E.T., Wang, J., Wu, T., Chunhong, T., Creighton, R., Kile, A., et al.: A whole-genome shotgun optical map of yersinia pestis strain kim. Appl. Environ. Microbiol. 68(12), 6321–6331 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Ming Yiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, M. et al. (2016). Towards a More Accurate Error Model for BioNano Optical Maps. In: Bourgeois, A., Skums, P., Wan, X., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2016. Lecture Notes in Computer Science(), vol 9683. Springer, Cham. https://doi.org/10.1007/978-3-319-38782-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38782-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38781-9

  • Online ISBN: 978-3-319-38782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics