NEMo: An Evolutionary Model with Modularity for PPI Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9683)


Modelling the evolution of biological networks is a major challenge. Biological networks are usually represented as graphs; evolutionary events include addition and removal of vertices and edges, but also duplication of vertices and their associated edges. Since duplication is viewed as a primary driver of genomic evolution, recent work has focused on duplication-based models. Missing from these models is any embodiment of modularity, a widely accepted attribute of biological networks. Some models spontaneously generate modular structures, but none is known to maintain and evolve them.

We describe NEMo (Network Evolution with Modularity), a new model that embodies modularity. NEMo allows modules to emerge and vanish, to fission and merge, all driven by the underlying edge-level events using a duplication-based process. We introduce measures to compare biological networks in terms of their modular structure and use them to compare NEMo and existing duplication-based models and to compare both generated and published networks.


Generative model Evolutionary model PPI network Evolutionary event Modularity Network topology 



MY wishes to thank Mingfu Shao for many helpful discussions.


  1. 1.
    Abi-Haidar, A., et al.: Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks. Genome Biol. 9(Suppl 2), S11 (2008)CrossRefGoogle Scholar
  2. 2.
    Aittokallio, T.: Module finding approaches for protein interaction networks. In: Li, X.L., Ng, S.K. (eds.) Biological Data Mining in Protein Interaction Networks, pp. 335–353. IGI Publishing, Hershey (2009)CrossRefGoogle Scholar
  3. 3.
    Barabási, A.L., Oltvai, Z.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004)CrossRefGoogle Scholar
  4. 4.
    Bhan, A., Galas, D., Dewey, T.: A duplication growth model of gene expression networks. Bioinformatics 18(11), 1486–1493 (2002)CrossRefGoogle Scholar
  5. 5.
    Collins, S., Kemmeren, P., Zhao, X., et al.: Toward a comprehensive atlas of the physical interactive of saccharomyces cerevisiae. Mol. Cell. Proteomics 6(3), 439–450 (2007)CrossRefGoogle Scholar
  6. 6.
    Dittrich, M., et al.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. In: Proceedings of 16th International Conference on Intelligent Systems for Molecular Biology (ISMB 2008), in Bioinformatics, vol. 24, pp. i223–i231 (2008)Google Scholar
  7. 7.
    Dutkowski, J., Tiuryn, J.: Identification of functional modules from conserved ancestral protein interactions. Bioinformatics 23(13), i149–i158 (2007)CrossRefGoogle Scholar
  8. 8.
    Dutkowski, J., Tiuryn, J.: Phylogeny-guided interaction mapping in seven eukaryotes. BMC Bioinform. 10(1), 393 (2009)CrossRefGoogle Scholar
  9. 9.
    Franceschini, A., et al.: String v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013)CrossRefGoogle Scholar
  10. 10.
    Hao, Y., Zhu, X., Huang, M., Li, M.: Discovering patterns to extract protein-protein interactions from the literature. Bioinformatics 21(15), 3294–3300 (2005)CrossRefGoogle Scholar
  11. 11.
    Hartwell, L., Hopfield, J., Leibler, S., Murray, A.: From molecular to modular cell biology. Nature 402(6761), C47–C52 (1999)CrossRefGoogle Scholar
  12. 12.
    Jin, Y., Turaev, D., Weinmaier, T., Rattei, T., Makse, H.: The evolutionary dynamics of protein-protein interaction networks inferred from the reconstruction of ancient networks. PLoS ONE 8(3), e58134 (2013)CrossRefGoogle Scholar
  13. 13.
    Lynch, M., et al.: The evolutionary fate and consequences of duplicate genes. Science 290(5494), 1151–1254 (2000)CrossRefGoogle Scholar
  14. 14.
    Makino, T., McLysaght, A.: Evolutionary analyses of protein interaction networks. In: Li, X.L., Ng, S.K. (eds.) Biological Data Mining in Protein Interaction Networks, pp. 169–181. IGI Publishing, Hershey (2009)CrossRefGoogle Scholar
  15. 15.
    Marcotte, E., Xenarios, I., Eisenberg, D.: Mining literature for protein protein interactions. Bioinformatics 17, 359–363 (2001)CrossRefGoogle Scholar
  16. 16.
    Middendorf, M., Ziv, E., Wiggins, C.: Inferring network mechanisms: the drosophila melanogaster protein interaction network. Proc. Nat. Acad. Sci. USA 102(9), 3192–3197 (2005)CrossRefGoogle Scholar
  17. 17.
    Navlakha, S., Kingsford, C.: Network archaeology: uncovering ancient networks from present-day interactions. PLoS Comput. Biol. 7(4), e1001119 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9, 471–472 (2012)CrossRefGoogle Scholar
  19. 19.
    Ohno, S.: Evolution by Gene Duplication. Springer, Berlin (1970)CrossRefGoogle Scholar
  20. 20.
    Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)CrossRefGoogle Scholar
  21. 21.
    Peregrin-Alvarez, J., et al.: The modular organisation of protein interactions in escherichia coli. PLoS Comput. Biol. 5(10), e1000523 (2009)CrossRefGoogle Scholar
  22. 22.
    Prasad, T.S.K., et al.: Human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009)CrossRefGoogle Scholar
  23. 23.
    Prasad, T., et al.: The human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009)CrossRefGoogle Scholar
  24. 24.
    Qian, J., Luscombe, N., Gerstein, M.: Protein family and fold occurrence in genomes: powerlaw behaviour and evolutionary model. J. Mol. Biol. 313, 673–689 (2001)CrossRefGoogle Scholar
  25. 25.
    Radivojac, P., Peng, K., Clark, W., et al.: An integrated approach to inferring gene-disease associations in humans. Proteins 72(3), 1030–1037 (2008)CrossRefGoogle Scholar
  26. 26.
    Sahraeian, S., Yoon, B.J.: A network synthesis model for generating protein interaction network families. PLoS ONE 7(8), e41474 (2012)CrossRefGoogle Scholar
  27. 27.
    Saraph, V., Milenkovi, T.: Magna: maximizing accuracy in global network alignment. Bioinformatics 30(20), 2931–2940 (2014). CrossRefGoogle Scholar
  28. 28.
    Schlosser, G., Wagner, G.: Modularity in Development and Evolution. University of Chicago Press, Chicago (2004)Google Scholar
  29. 29.
    Sole, R., Pastor-Satorras, R., Smith, E., Kepler, T.: A model of large-scale proteome evolution. Adv. Complex Syst. 5, 43–54 (2002)CrossRefzbMATHGoogle Scholar
  30. 30.
    Sole, R., Valverde, S.: Spontaneous emergence of modularity in cellular networks. J. R. Soc. Interface 5(18), 129–133 (2008)CrossRefGoogle Scholar
  31. 31.
    Szklarczyk, D., et al.: String v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015)CrossRefGoogle Scholar
  32. 32.
    Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein-protein interaction networks. Nat. Biotech. 21(6), 697–700 (2003)CrossRefGoogle Scholar
  33. 33.
    Wagner, A.: The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18, 1283–1292 (2001)CrossRefGoogle Scholar
  34. 34.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, UK (1994)CrossRefzbMATHGoogle Scholar
  35. 35.
    Zhang, X., Moret, B.: Refining transcriptional regulatory networks using network evolutionary models and gene histories. Algorithms Mol. Biol. 5(1), 1 (2010)CrossRefGoogle Scholar
  36. 36.
    Zhang, X., Moret, B.: Refining regulatory networks through phylogenetic transfer of information. ACM/IEEE Trans. Comput. Biol. Bioinf. 9(4), 1032–1045 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Computer and Communication SciencesEPFLLausanneSwitzerland
  2. 2.Department of MathematicsUniversity of ZagrebZagrebCroatia
  3. 3.Department of Electrical and Computer EngineeringStanford UniversityPalo AltoUSA
  4. 4.European Bioinformatics Institute (EMBL-EBI)CambridgeUK

Personalised recommendations