NEMo: An Evolutionary Model with Modularity for PPI Networks

  • Min Ye
  • Gabriela C. Racz
  • Qijia Jiang
  • Xiuwei Zhang
  • Bernard M. E. Moret
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9683)


Modelling the evolution of biological networks is a major challenge. Biological networks are usually represented as graphs; evolutionary events include addition and removal of vertices and edges, but also duplication of vertices and their associated edges. Since duplication is viewed as a primary driver of genomic evolution, recent work has focused on duplication-based models. Missing from these models is any embodiment of modularity, a widely accepted attribute of biological networks. Some models spontaneously generate modular structures, but none is known to maintain and evolve them.

We describe NEMo (Network Evolution with Modularity), a new model that embodies modularity. NEMo allows modules to emerge and vanish, to fission and merge, all driven by the underlying edge-level events using a duplication-based process. We introduce measures to compare biological networks in terms of their modular structure and use them to compare NEMo and existing duplication-based models and to compare both generated and published networks.


Generative model Evolutionary model PPI network Evolutionary event Modularity Network topology 


  1. 1.
    Abi-Haidar, A., et al.: Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks. Genome Biol. 9(Suppl 2), S11 (2008)CrossRefGoogle Scholar
  2. 2.
    Aittokallio, T.: Module finding approaches for protein interaction networks. In: Li, X.L., Ng, S.K. (eds.) Biological Data Mining in Protein Interaction Networks, pp. 335–353. IGI Publishing, Hershey (2009)CrossRefGoogle Scholar
  3. 3.
    Barabási, A.L., Oltvai, Z.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004)CrossRefGoogle Scholar
  4. 4.
    Bhan, A., Galas, D., Dewey, T.: A duplication growth model of gene expression networks. Bioinformatics 18(11), 1486–1493 (2002)CrossRefGoogle Scholar
  5. 5.
    Collins, S., Kemmeren, P., Zhao, X., et al.: Toward a comprehensive atlas of the physical interactive of saccharomyces cerevisiae. Mol. Cell. Proteomics 6(3), 439–450 (2007)CrossRefGoogle Scholar
  6. 6.
    Dittrich, M., et al.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. In: Proceedings of 16th International Conference on Intelligent Systems for Molecular Biology (ISMB 2008), in Bioinformatics, vol. 24, pp. i223–i231 (2008)Google Scholar
  7. 7.
    Dutkowski, J., Tiuryn, J.: Identification of functional modules from conserved ancestral protein interactions. Bioinformatics 23(13), i149–i158 (2007)CrossRefGoogle Scholar
  8. 8.
    Dutkowski, J., Tiuryn, J.: Phylogeny-guided interaction mapping in seven eukaryotes. BMC Bioinform. 10(1), 393 (2009)CrossRefGoogle Scholar
  9. 9.
    Franceschini, A., et al.: String v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013)CrossRefGoogle Scholar
  10. 10.
    Hao, Y., Zhu, X., Huang, M., Li, M.: Discovering patterns to extract protein-protein interactions from the literature. Bioinformatics 21(15), 3294–3300 (2005)CrossRefGoogle Scholar
  11. 11.
    Hartwell, L., Hopfield, J., Leibler, S., Murray, A.: From molecular to modular cell biology. Nature 402(6761), C47–C52 (1999)CrossRefGoogle Scholar
  12. 12.
    Jin, Y., Turaev, D., Weinmaier, T., Rattei, T., Makse, H.: The evolutionary dynamics of protein-protein interaction networks inferred from the reconstruction of ancient networks. PLoS ONE 8(3), e58134 (2013)CrossRefGoogle Scholar
  13. 13.
    Lynch, M., et al.: The evolutionary fate and consequences of duplicate genes. Science 290(5494), 1151–1254 (2000)CrossRefGoogle Scholar
  14. 14.
    Makino, T., McLysaght, A.: Evolutionary analyses of protein interaction networks. In: Li, X.L., Ng, S.K. (eds.) Biological Data Mining in Protein Interaction Networks, pp. 169–181. IGI Publishing, Hershey (2009)CrossRefGoogle Scholar
  15. 15.
    Marcotte, E., Xenarios, I., Eisenberg, D.: Mining literature for protein protein interactions. Bioinformatics 17, 359–363 (2001)CrossRefGoogle Scholar
  16. 16.
    Middendorf, M., Ziv, E., Wiggins, C.: Inferring network mechanisms: the drosophila melanogaster protein interaction network. Proc. Nat. Acad. Sci. USA 102(9), 3192–3197 (2005)CrossRefGoogle Scholar
  17. 17.
    Navlakha, S., Kingsford, C.: Network archaeology: uncovering ancient networks from present-day interactions. PLoS Comput. Biol. 7(4), e1001119 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9, 471–472 (2012)CrossRefGoogle Scholar
  19. 19.
    Ohno, S.: Evolution by Gene Duplication. Springer, Berlin (1970)CrossRefGoogle Scholar
  20. 20.
    Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)CrossRefGoogle Scholar
  21. 21.
    Peregrin-Alvarez, J., et al.: The modular organisation of protein interactions in escherichia coli. PLoS Comput. Biol. 5(10), e1000523 (2009)CrossRefGoogle Scholar
  22. 22.
    Prasad, T.S.K., et al.: Human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009)CrossRefGoogle Scholar
  23. 23.
    Prasad, T., et al.: The human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009)CrossRefGoogle Scholar
  24. 24.
    Qian, J., Luscombe, N., Gerstein, M.: Protein family and fold occurrence in genomes: powerlaw behaviour and evolutionary model. J. Mol. Biol. 313, 673–689 (2001)CrossRefGoogle Scholar
  25. 25.
    Radivojac, P., Peng, K., Clark, W., et al.: An integrated approach to inferring gene-disease associations in humans. Proteins 72(3), 1030–1037 (2008)CrossRefGoogle Scholar
  26. 26.
    Sahraeian, S., Yoon, B.J.: A network synthesis model for generating protein interaction network families. PLoS ONE 7(8), e41474 (2012)CrossRefGoogle Scholar
  27. 27.
    Saraph, V., Milenkovi, T.: Magna: maximizing accuracy in global network alignment. Bioinformatics 30(20), 2931–2940 (2014). CrossRefGoogle Scholar
  28. 28.
    Schlosser, G., Wagner, G.: Modularity in Development and Evolution. University of Chicago Press, Chicago (2004)Google Scholar
  29. 29.
    Sole, R., Pastor-Satorras, R., Smith, E., Kepler, T.: A model of large-scale proteome evolution. Adv. Complex Syst. 5, 43–54 (2002)CrossRefMATHGoogle Scholar
  30. 30.
    Sole, R., Valverde, S.: Spontaneous emergence of modularity in cellular networks. J. R. Soc. Interface 5(18), 129–133 (2008)CrossRefGoogle Scholar
  31. 31.
    Szklarczyk, D., et al.: String v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015)CrossRefGoogle Scholar
  32. 32.
    Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein-protein interaction networks. Nat. Biotech. 21(6), 697–700 (2003)CrossRefGoogle Scholar
  33. 33.
    Wagner, A.: The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18, 1283–1292 (2001)CrossRefGoogle Scholar
  34. 34.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, UK (1994)CrossRefMATHGoogle Scholar
  35. 35.
    Zhang, X., Moret, B.: Refining transcriptional regulatory networks using network evolutionary models and gene histories. Algorithms Mol. Biol. 5(1), 1 (2010)CrossRefGoogle Scholar
  36. 36.
    Zhang, X., Moret, B.: Refining regulatory networks through phylogenetic transfer of information. ACM/IEEE Trans. Comput. Biol. Bioinf. 9(4), 1032–1045 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Min Ye
    • 1
  • Gabriela C. Racz
    • 2
  • Qijia Jiang
    • 3
  • Xiuwei Zhang
    • 4
  • Bernard M. E. Moret
    • 1
  1. 1.School of Computer and Communication SciencesEPFLLausanneSwitzerland
  2. 2.Department of MathematicsUniversity of ZagrebZagrebCroatia
  3. 3.Department of Electrical and Computer EngineeringStanford UniversityPalo AltoUSA
  4. 4.European Bioinformatics Institute (EMBL-EBI)CambridgeUK

Personalised recommendations