Skip to main content

Pathology and Molecular Pathology of Breast Cancer

  • Chapter
  • First Online:

Abstract

In this chapter, we introduce the reader to the embryological development of the mammary gland, together with its normal anatomy, histology, and physiology. The histopathologic features of benign conditions, including risk indicators and precursors of cancer, are then discussed, with a particular focus on the molecular underpinning of preinvasive lesions. The remainder of the chapter focuses on breast cancer, integrating morphological features with molecular pathology data. The contribution of high-throughput techniques is discussed with particular attention to their contribution to our understanding of the biology of breast cancer. It is now universally acknowledged that breast cancer does not represent a single disease. This concept was brought forth by the molecular classification devised by gene expression profiling analyses of invasive breast cancers. With the advent of massively parallel sequencing, the diversity of breast cancer has now also become evident even at base pair resolution. If on one side the molecular classification has provided a working model for breast cancer taxonomy largely embraced also by clinicians, surgeons, scientists and pathologists, we have to acknowledge that prognostication and therapy prediction for breast cancer patients is still currently largely based on accurate grading and staging, assessment of hormone receptors by immunohistochemistry and of HER2 status by immunohistochemistry and in situ hybridization. In the subgroup of ER-positive/HER2-negative disease, however, prognostic gene expression signatures have entered the daily practice and have a definite role in refining prognostication and clinical decision-making. Furthermore, massive parallel sequencing analysis of breast cancers has proven to be an ancillary method for the enrollment of patients with advanced disease into clinical trials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rosen PP. Anatomy and physiological morphology. In: Rosen’s breast pathology. Philadelphia: Lippincott Williams and Wilkins; 2009. p. 1–25.

    Google Scholar 

  2. Anbazhagan R, Osin PP, Bartkova J, Nathan B, Lane EB, Gusterson BA. The development of epithelial phenotypes in the human fetal and infant breast. J Pathol. 1998;184(2):197–206.

    Article  CAS  PubMed  Google Scholar 

  3. Ham AW, Comrack DH. The breast. In: Histology. Philadelphia: Lipponcott; 1979. p. 866–74.

    Google Scholar 

  4. Adriance MC, Inman JL, Petersen OW, Bissell MJ. Myoepithelial cells: good fences make good neighbors. Breast Cancer Res. 2005;7(5):190–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Topper YJ, Freeman CS. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev. 1980;60(4):1049–106.

    CAS  PubMed  Google Scholar 

  6. Sternlicht MD. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res. 2006;8(1):201.

    Article  PubMed  CAS  Google Scholar 

  7. Collins LC, Schnitt S. Breast. In: Histology for pathologists. Philadelphia: Lippincott Williams and Wilkins; 2007. p. 55–72.

    Google Scholar 

  8. Bussolati G. Clear cell metaplasia of the breast. Histopathology. 1990;16(3):316.

    Article  CAS  PubMed  Google Scholar 

  9. Toker C. Clear cells of the nipple epidermis. Cancer. 1970;25(3):601–10.

    Article  CAS  PubMed  Google Scholar 

  10. Rosen PP. Adenosis and microglandular adenosis. In: Rosen’s breast pathology. Philadelphia: Lippincott Williams and Wilkins; 2009. p. 161–86.

    Google Scholar 

  11. Haagensen CD. Adenosis tumor. In: Diseases of the breast. Philadelphia: WB Saunders; 1971.

    Google Scholar 

  12. Bodian CA, Perzin KH, Lattes R, Hoffmann P, Abernathy TG. Prognostic significance of benign proliferative breast disease. Cancer. 1993;71(12):3896–907.

    Article  CAS  PubMed  Google Scholar 

  13. Kamel OW, Kempson RL, Hendrickson MR. In situ proliferative epithelial lesions of the breast. Pathology (Phila). 1992;1(1):65–102.

    CAS  Google Scholar 

  14. Lopez-Garcia MA, Geyer FC, Lacroix-Triki M, Marchio C, Reis-Filho JS. Breast cancer precursors revisited: molecular features and progression pathways. Histopathology. 2010;57(2):171–92.

    Article  PubMed  Google Scholar 

  15. Washington C, Dalbegue F, Abreo F, Taubenberger JK, Lichy JH. Loss of heterozygosity in fibrocystic change of the breast: genetic relationship between benign proliferative lesions and associated carcinomas. Am J Pathol. 2000;157(1):323–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lakhani SR, Ellis IO, Schnitt SJ, Hoon Tan P, Van de Vijver M. WHO classification of tumors of the breast. Lyon: IARC Press; 2012.

    Google Scholar 

  17. Rosen PP. Ductal hyperplasia: usual and atypical. In: Rosen’s breast pathology. Philadelphia: Lippincott Williams and Wilkins; 2009. p. 230–63.

    Google Scholar 

  18. Harada O, Hoe R, Lin J, Thike AA, Jara-Lazaro AR, Petersson F, et al. Intranuclear inclusions in epithelial cells of benign proliferative breast lesions. J Clin Pathol. 2011;64(9):776–80.

    Article  PubMed  Google Scholar 

  19. Lauer S, Oprea-Ilies G, Cohen C, Adsay V, Adams AL. Acidophilic nuclear inclusions are specific for florid ductal hyperplasia among proliferative breast lesions. Arch Pathol Lab Med. 2011;135(6):766–9.

    PubMed  Google Scholar 

  20. O’Connell P, Pekkel V, Fuqua SA, Osborne CK, Clark GM, Allred DC. Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst. 1998;90(9):697–703.

    Article  PubMed  Google Scholar 

  21. Reis-Filho JS, Lakhani SR. The diagnosis and management of pre-invasive breast disease: genetic alterations in pre-invasive lesions. Breast Cancer Res. 2003;5(6):313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aubele MM, Cummings MC, Mattis AE, Zitzelsberger HF, Walch AK, Kremer M, et al. Accumulation of chromosomal imbalances from intraductal proliferative lesions to adjacent in situ and invasive ductal breast cancer. Diagn Mol Pathol. 2000;9(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  23. Jones C, Merrett S, Thomas VA, Barker TH, Lakhani SR. Comparative genomic hybridization analysis of bilateral hyperplasia of usual type of the breast. J Pathol. 2003;199(2):152–6.

    Article  CAS  PubMed  Google Scholar 

  24. Simpson PT, Reis-Filho JS, Gale T, Lakhani SR. Molecular evolution of breast cancer. J Pathol. 2005;205(2):248–54.

    Article  CAS  PubMed  Google Scholar 

  25. Lakhani SR, Slack DN, Hamoudi RA, Collins N, Stratton MR, Sloane JP. Detection of allelic imbalance indicates that a proportion of mammary hyperplasia of usual type are clonal, neoplastic proliferations. Lab Invest. 1996;74(1):129–35.

    CAS  PubMed  Google Scholar 

  26. Simpson PT, Gale T, Reis-Filho JS, Jones C, Parry S, Sloane JP, et al. Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol. 2005;29(6):734–46.

    Article  PubMed  Google Scholar 

  27. Boecker W, Moll R, Dervan P, Buerger H, Poremba C, Diallo RI, et al. Usual ductal hyperplasia of the breast is a committed stem (progenitor) cell lesion distinct from atypical ductal hyperplasia and ductal carcinoma in situ. J Pathol. 2002;198(4):458–67.

    Article  PubMed  Google Scholar 

  28. Arriola E, Lambros MB, Jones C, Dexter T, Mackay A, Tan DS, et al. Evaluation of Phi29-based whole-genome amplification for microarray-based comparative genomic hybridisation. Lab Invest. 2007;87(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Zhu R, Wang L, Zhu T, Li Q, Chen Q, et al. PIK3CA mutations mostly begin to develop in ductal carcinoma of the breast. Exp Mol Pathol. 2010;88(1):150–5.

    Article  CAS  PubMed  Google Scholar 

  30. Ang DC, Warrick AL, Shilling A, Beadling C, Corless CL, Troxell ML. Frequent phosphatidylinositol-3-kinase mutations in proliferative breast lesions. Mod Pathol. 2014;27(5):740–50.

    Article  CAS  PubMed  Google Scholar 

  31. Rosen PP. Papilloma and related benign tumors. In: Rosen’s breast pathology. Philadelphia: Lippincott Williams and Wilkins; 2009. p. 85–136.

    Google Scholar 

  32. Andersen JA, Gram JB. Radial scar in the female breast. A long-term follow-up study of 32 cases. Cancer. 1984;53(11):2557–60.

    Article  CAS  PubMed  Google Scholar 

  33. Anderson TJ, Battersby S. Radial scars of benign and malignant breasts: comparative features and significance. J Pathol. 1985;147(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  34. Fisher ER, Palekar AS, Kotwal N, Lipana N. A nonencapsulated sclerosing lesion of the breast. Am J Clin Pathol. 1979;71(3):240–6.

    Article  CAS  PubMed  Google Scholar 

  35. Berg JC, Visscher DW, Vierkant RA, Pankratz VS, Maloney SD, Lewis JT, et al. Breast cancer risk in women with radial scars in benign breast biopsies. Breast Cancer Res Treat. 2008;108(2):167–74.

    Article  PubMed  Google Scholar 

  36. Jacobs TW, Byrne C, Colditz G, Connolly JL, Schnitt SJ. Radial scars in benign breast-biopsy specimens and the risk of breast cancer. N Engl J Med. 1999;340(6):430–6.

    Article  CAS  PubMed  Google Scholar 

  37. Sanders ME, Schuyler PA, Dupont WD, Page DL. The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer. 2005;103(12):2481–4.

    Article  PubMed  Google Scholar 

  38. Aroner SA, Collins LC, Connolly JL, Colditz GA, Schnitt SJ, Rosner BA, et al. Radial scars and subsequent breast cancer risk: results from the Nurses’ Health Studies. Breast Cancer Res Treat. 2013;139(1):277–85.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Manfrin E, Remo A, Falsirollo F, Reghellin D, Bonetti F. Risk of neoplastic transformation in asymptomatic radial scar. Analysis of 117 cases. Breast Cancer Res Treat. 2008;107(3):371–7.

    Article  PubMed  Google Scholar 

  40. Denley H, Pinder SE, Tan PH, Sim CS, Brown R, Barker T, et al. Metaplastic carcinoma of the breast arising within complex sclerosing lesion: a report of five cases. Histopathology. 2000;36(3):203–9.

    Article  CAS  PubMed  Google Scholar 

  41. Gobbi H, Simpson JF, Jensen RA, Olson SJ, Page DL. Metaplastic spindle cell breast tumors arising within papillomas, complex sclerosing lesions, and nipple adenomas. Mod Pathol. 2003;16(9):893–901.

    Article  PubMed  Google Scholar 

  42. Sloane JP, Mayers MM. Carcinoma and atypical hyperplasia in radial scars and complex sclerosing lesions: importance of lesion size and patient age. Histopathology. 1993;23(3):225–31.

    Article  CAS  PubMed  Google Scholar 

  43. Wellings SR, Alpers CE. Subgross pathologic features and incidence of radial scars in the breast. Hum Pathol. 1984;15(5):475–9.

    Article  CAS  PubMed  Google Scholar 

  44. Wolters KL, Ang D, Warrick A, Beadling C, Corless CL, Troxell ML. Frequent PIK3CA mutations in radial scars. Diagn Mol Pathol. 2013;22(4):210–4.

    Article  CAS  PubMed  Google Scholar 

  45. Ng CK, Schultheis AM, Bidard FC, Weigelt B, Reis-Filho JS. Breast cancer genomics from microarrays to massively parallel sequencing: paradigms and new insights. J Natl Cancer Inst. 2015;107(5).

    Google Scholar 

  46. Troxell ML, Levine J, Beadling C, Warrick A, Dunlap J, Presnell A, et al. High prevalence of PIK3CA/AKT pathway mutations in papillary neoplasms of the breast. Mod Pathol. 2010;23(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  47. Troxell ML, Brunner AL, Neff T, Warrick A, Beadling C, Montgomery K, et al. Phosphatidylinositol-3-kinase pathway mutations are common in breast columnar cell lesions. Mod Pathol. 2012;25(7):930–7.

    Article  CAS  PubMed  Google Scholar 

  48. Eusebi V, Millis RR. Epitheliosis, infiltrating epitheliosis, and radial scar. Semin Diagn Pathol. 2010;27(1):5–12.

    Article  PubMed  Google Scholar 

  49. Azzopardi JG. Overdiagnosis of malignancy. London, UK: W.B. Saunders Company, Ltd; 1979.

    Google Scholar 

  50. Eberle CA, Piscuoglio S, Rakha EA, Ng CK, Geyer FC, Edelweiss M, et al. Infiltrating epitheliosis of the breast: characterization of histologic features, immunophenotype and genomic profile. Histopathology. 2015.

    Google Scholar 

  51. Droufakou S, Deshmane V, Roylance R, Hanby A, Tomlinson I, Hart IR. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer. 2001;92(3):404–8.

    Article  CAS  PubMed  Google Scholar 

  52. Dupont WD, Page DL. Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med. 1985;312(3):146–51.

    Article  CAS  PubMed  Google Scholar 

  53. Page DL, Dupont WD. Anatomic markers of human premalignancy and risk of breast cancer. Cancer. 1990;66(6 Suppl):1326–35.

    Article  CAS  PubMed  Google Scholar 

  54. Page DL, Dupont WD. Proliferative breast disease: diagnosis and implications. Science. 1991;253(5022):915–6.

    Article  CAS  PubMed  Google Scholar 

  55. Page DL, Dupont WD. Indicators of increased breast cancer risk in humans. J Cell Biochem Suppl. 1992;16G:175–82.

    Article  CAS  PubMed  Google Scholar 

  56. Abdel-Fatah TM, Powe DG, Hodi Z, Lee AH, Reis-Filho JS, Ellis IO. High frequency of coexistence of columnar cell lesions, lobular neoplasia, and low grade ductal carcinoma in situ with invasive tubular carcinoma and invasive lobular carcinoma. Am J Surg Pathol. 2007;31(3):417–26.

    Article  PubMed  Google Scholar 

  57. Abdel-Fatah TM, Powe DG, Hodi Z, Reis-Filho JS, Lee AH, Ellis IO. Morphologic and molecular evolutionary pathways of low nuclear grade invasive breast cancers and their putative precursor lesions: further evidence to support the concept of low nuclear grade breast neoplasia family. Am J Surg Pathol. 2008;32(4):513–23.

    Article  PubMed  Google Scholar 

  58. Brandt SM, Young GQ, Hoda SA. The “Rosen Triad”: tubular carcinoma, lobular carcinoma in situ, and columnar cell lesions. Adv Anat Pathol. 2008;15(3):140–6.

    Article  PubMed  Google Scholar 

  59. Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D, et al. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell. 2009;16(2):115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reis-Filho JS, Simpson PT, Gale T, Lakhani SR. The molecular genetics of breast cancer: the contribution of comparative genomic hybridization. Pathol Res Pract. 2005;201(11):713–25.

    Article  PubMed  Google Scholar 

  61. Geyer FC, Kushner YB, Lambros MB, Natrajan R, Mackay A, Tamber N, et al. Microglandular adenosis or microglandular adenoma? A molecular genetic analysis of a case associated with atypia and invasive carcinoma. Histopathology. 2009;55(6):732–43.

    Article  PubMed  Google Scholar 

  62. Geyer FC, Lacroix-Triki M, Colombo PE, Patani N, Gauthier A, Natrajan R, et al. Molecular evidence in support of the neoplastic and precursor nature of microglandular adenosis. Histopathology. 2012;60(6B):E115–30.

    Article  PubMed  Google Scholar 

  63. Shin SJ, Simpson PT, Da Silva L, Jayanthan J, Reid L, Lakhani SR, et al. Molecular evidence for progression of microglandular adenosis (MGA) to invasive carcinoma. Am J Surg Pathol. 2009;33(4):496–504.

    Article  PubMed  Google Scholar 

  64. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA. 2003;100(10):5974–9.

    Article  CAS  PubMed Central  Google Scholar 

  65. Natrajan R, Lambros MB, Geyer FC, Marchio C, Tan DS, Vatcheva R, et al. Loss of 16q in high grade breast cancer is associated with estrogen receptor status: evidence for progression in tumors with a luminal phenotype? Genes Chromosom Cancer. 2009;48(4):351–65.

    Article  CAS  PubMed  Google Scholar 

  66. Feeley L, Quinn CM. Columnar cell lesions of the breast. Histopathology. 2008;52(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  67. Fraser JL, Raza S, Chorny K, Connolly JL, Schnitt SJ. Columnar alteration with prominent apical snouts and secretions: a spectrum of changes frequently present in breast biopsies performed for microcalcifications. Am J Surg Pathol. 1998;22(12):1521–7.

    Article  CAS  PubMed  Google Scholar 

  68. Goldstein NS, O’Malley BA. Cancerization of small ectatic ducts of the breast by ductal carcinoma in situ cells with apocrine snouts: a lesion associated with tubular carcinoma. Am J Clin Pathol. 1997;107(5):561–6.

    Article  CAS  PubMed  Google Scholar 

  69. Pinder SE, Reis-Filho JS. Non-operative breast pathology. J Clin Pathol. 2007;60(12):1297–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schnitt SJ. The diagnosis and management of pre-invasive breast disease: flat epithelial atypia—classification, pathologic features and clinical significance. Breast Cancer Res. 2003;5(5):263–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dabbs DJ, Carter G, Fudge M, Peng Y, Swalsky P, Finkelstein S. Molecular alterations in columnar cell lesions of the breast. Mod Pathol. 2006;19(3):344–9.

    Article  CAS  PubMed  Google Scholar 

  72. Moinfar F, Man YG, Bratthauer GL, Ratschek M, Tavassoli FA. Genetic abnormalities in mammary ductal intraepithelial neoplasia-flat type (“clinging ductal carcinoma in situ”): a simulator of normal mammary epithelium. Cancer. 2000;88(9):2072–81.

    Article  CAS  PubMed  Google Scholar 

  73. Rosen PP. Columnar cell hyperplasia is associated with lobular carcinoma in situ and tubular carcinoma. Am J Surg Pathol. 1999;23(12):1561.

    Google Scholar 

  74. Boulos FI, Dupont WD, Schuyler PA, Sanders ME, Page DL, Fedda FA, et al. Clinicopathologic characteristics of carcinomas that develop after a biopsy containing columnar cell lesions: evidence against a precursor role. Cancer. 2012;118(9):2372–7.

    Article  PubMed  Google Scholar 

  75. Boulos FI, Dupont WD, Simpson JF, Schuyler PA, Sanders ME, Freudenthal ME, et al. Histologic associations and long-term cancer risk in columnar cell lesions of the breast: a retrospective cohort and a nested case-control study. Cancer. 2008;113(9):2415–21.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wellings SR, Jensen HM. On the origin and progression of ductal carcinoma in the human breast. J Natl Cancer Inst. 1973;50(5):1111–8.

    CAS  PubMed  Google Scholar 

  77. Wellings SR, Jensen HM, Marcum RG. An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst. 1975;55(2):231–73.

    CAS  PubMed  Google Scholar 

  78. Dabbs DJ, Schnitt SJ, Geyer FC, Weigelt B, Baehner FL, Decker T, et al. Lobular neoplasia of the breast revisited with emphasis on the role of E-cadherin immunohistochemistry. Am J Surg Pathol. 2013;37(7):e1–11.

    Article  PubMed  Google Scholar 

  79. Foote FW Jr, Stewart FW. A histologic classification of carcinoma of the breast. Surgery. 1946;19:74–99.

    PubMed  Google Scholar 

  80. Haagensen CD, Lane N, Lattes R, Bodian C. Lobular neoplasia (so-called lobular carcinoma in situ) of the breast. Cancer. 1978;42(2):737–69.

    Article  CAS  PubMed  Google Scholar 

  81. Hanby AM, Hughes TA. In situ and invasive lobular neoplasia of the breast. Histopathology. 2008;52(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  82. Page DL, Dupont WD, Rogers LW. Ductal involvement by cells of atypical lobular hyperplasia in the breast: a long-term follow-up study of cancer risk. Hum Pathol. 1988;19(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  83. Page DL, Dupont WD, Rogers LW, Rados MS. Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer. 1985;55(11):2698–708.

    Article  CAS  PubMed  Google Scholar 

  84. Lu YJ, Osin P, Lakhani SR, Di Palma S, Gusterson BA, Shipley JM. Comparative genomic hybridization analysis of lobular carcinoma in situ and atypical lobular hyperplasia and potential roles for gains and losses of genetic material in breast neoplasia. Cancer Res. 1998;58(20):4721–7.

    CAS  PubMed  Google Scholar 

  85. Mastracci TL, Shadeo A, Colby SM, Tuck AB, O’Malley FP, Bull SB, et al. Genomic alterations in lobular neoplasia: a microarray comparative genomic hybridization signature for early neoplastic proliferationin the breast. Genes Chromosom Cancer. 2006;45(11):1007–17.

    Article  CAS  PubMed  Google Scholar 

  86. Fitzgibbons PL, Henson DE, Hutter RV. Benign breast changes and the risk for subsequent breast cancer: an update of the 1985 consensus statement. Cancer Committee of the College of American Pathologists. Arch Pathol Lab Med. 1998;122(12):1053–5.

    CAS  PubMed  Google Scholar 

  87. Reis-Filho JS, Pinder SE. Non-operative breast pathology: lobular neoplasia. J Clin Pathol. 2007;60(12):1321–7.

    Article  PubMed  Google Scholar 

  88. Page DL, Schuyler PA, Dupont WD, Jensen RA, Plummer WD Jr, Simpson JF. Atypical lobular hyperplasia as a unilateral predictor of breast cancer risk: a retrospective cohort study. Lancet. 2003;361(9352):125–9.

    Article  PubMed  Google Scholar 

  89. Lakhani SR, Audretsch W, Cleton-Jensen AM, Cutuli B, Ellis I, Eusebi V, et al. The management of lobular carcinoma in situ (LCIS). Is LCIS the same as ductal carcinoma in situ (DCIS)? Eur J Cancer. 2006;42(14):2205–11.

    Article  PubMed  Google Scholar 

  90. Schnitt SJ, Morrow M. Lobular carcinoma in situ: current concepts and controversies. Semin Diagn Pathol. 1999;16(3):209–23.

    CAS  PubMed  Google Scholar 

  91. Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell. 2006;10(5):437–49.

    Article  CAS  PubMed  Google Scholar 

  92. Sarrio D, Moreno-Bueno G, Hardisson D, Sanchez-Estevez C, Guo M, Herman JG, et al. Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer. 2003;106(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  93. Vos CB, Cleton-Jansen AM, Berx G, de Leeuw WJ, ter Haar NT, van Roy F, et al. E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer. 1997;76(9):1131–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hwang ES, Nyante SJ, Yi Chen Y, Moore D, DeVries S, Korkola JE, et al. Clonality of lobular carcinoma in situ and synchronous invasive lobular carcinoma. Cancer. 2004;100(12):2562–72.

    Article  PubMed  Google Scholar 

  95. Morandi L, Marucci G, Foschini MP, Cattani MG, Pession A, Riva C, et al. Genetic similarities and differences between lobular in situ neoplasia (LN) and invasive lobular carcinoma of the breast. Virchows Arch. 2006;449(1):14–23.

    Article  PubMed  Google Scholar 

  96. Nyante SJ, Devries S, Chen YY, Hwang ES. Array-based comparative genomic hybridization of ductal carcinoma in situ and synchronous invasive lobular cancer. Hum Pathol. 2004;35(6):759–63.

    Article  CAS  PubMed  Google Scholar 

  97. Andrade VP, Morrogh M, Qin LX, Olvera N, Giri D, Muhsen S, et al. Gene expression profiling of lobular carcinoma in situ reveals candidate precursor genes for invasion. Mol Oncol. 2015;9(4):772–82.

    Article  CAS  PubMed  Google Scholar 

  98. King TA, Pilewskie M, Muhsen S, Patil S, Mautner SK, Park A, et al. Lobular carcinoma in situ: a 29-year longitudinal experience evaluating clinicopathologic features and breast cancer risk. J Clin Oncol. 2015.

    Google Scholar 

  99. Shin SJ, Lal A, De Vries S, Suzuki J, Roy R, Hwang ES, et al. Florid lobular carcinoma in situ: molecular profiling and comparison to classic lobular carcinoma in situ and pleomorphic lobular carcinoma in situ. Hum Pathol. 2013;44(10):1998–2009.

    Article  CAS  PubMed  Google Scholar 

  100. Page DL, Dupont WD, Rogers LW, Landenberger M. Intraductal carcinoma of the breast: follow-up after biopsy only. Cancer. 1982;49(4):751–8.

    Article  CAS  PubMed  Google Scholar 

  101. Tavassoli FA, Norris HJ. A comparison of the results of long-term follow-up for atypical intraductal hyperplasia and intraductal hyperplasia of the breast. Cancer. 1990;65(3):518–29.

    Article  CAS  PubMed  Google Scholar 

  102. Amari M, Suzuki A, Moriya T, Yoshinaga K, Amano G, Sasano H, et al. LOH analyses of premalignant and malignant lesions of human breast: frequent LOH in 8p, 16q, and 17q in atypical ductal hyperplasia. Oncol Rep. 1999;6(6):1277–80.

    CAS  PubMed  Google Scholar 

  103. Larson PS, de las Morenas A, Cerda SR, Bennett SR, Cupples LA, Rosenberg CL. Quantitative analysis of allele imbalance supports atypical ductal hyperplasia lesions as direct breast cancer precursors. J Pathol. 2006;209(3):307–16.

    Google Scholar 

  104. Lakhani SR, Collins N, Stratton MR, Sloane JP. Atypical ductal hyperplasia of the breast: clonal proliferation with loss of heterozygosity on chromosomes 16q and 17p. J Clin Pathol. 1995;48(7):611–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stratton MR, Collins N, Lakhani SR, Sloane JP. Loss of heterozygosity in ductal carcinoma in situ of the breast. J Pathol. 1995;175(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  106. Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, Decker T, et al. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol. 1999;187(4):396–402.

    Article  CAS  PubMed  Google Scholar 

  107. Gong G, DeVries S, Chew KL, Cha I, Ljung BM, Waldman FM. Genetic changes in paired atypical and usual ductal hyperplasia of the breast by comparative genomic hybridization. Clin Cancer Res. 2001;7(8):2410–4.

    CAS  PubMed  Google Scholar 

  108. Hughes LL, Wang M, Page DL, Gray R, Solin LJ, Davidson NE, et al. Local excision alone without irradiation for ductal carcinoma in situ of the breast: a trial of the Eastern Cooperative Oncology Group. J Clin Oncol. 2009;27(32):5319–24.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Allred DC, Wu Y, Mao S, Nagtegaal ID, Lee S, Perou CM, et al. Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res. 2008;14(2):370–8.

    Article  CAS  PubMed  Google Scholar 

  110. Hernandez L, Wilkerson PM, Lambros MB, Campion-Flora A, Rodrigues DN, Gauthier A, et al. Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra-tumour genetic heterogeneity and clonal selection. J Pathol. 2012;227(1):42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Solin LJ, Gray R, Baehner FL, Butler SM, Hughes LL, Yoshizawa C, et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst. 2013;105(10):701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Solin LJ, Gray R, Hughes LL, Wood WC, Lowen MA, Badve SS, et al. Surgical excision without radiation for ductal carcinoma in situ of the breast: 12-year results from the ECOG-ACRIN E5194 study. J Clin Oncol. 2015.

    Google Scholar 

  113. Eusebi V, Magalhaes F, Azzopardi JG. Pleomorphic lobular carcinoma of the breast: an aggressive tumor showing apocrine differentiation. Hum Pathol. 1992;23(6):655–62.

    Article  CAS  PubMed  Google Scholar 

  114. Middleton LP, Palacios DM, Bryant BR, Krebs P, Otis CN, Merino MJ. Pleomorphic lobular carcinoma: morphology, immunohistochemistry, and molecular analysis. Am J Surg Pathol. 2000;24(12):1650–6.

    Article  CAS  PubMed  Google Scholar 

  115. Sneige N, Wang J, Baker BA, Krishnamurthy S, Middleton LP. Clinical, histopathologic, and biologic features of pleomorphic lobular (ductal-lobular) carcinoma in situ of the breast: a report of 24 cases. Mod Pathol. 2002;15(10):1044–50.

    Article  PubMed  Google Scholar 

  116. Chen YY, Hwang ES, Roy R, DeVries S, Anderson J, Wa C, et al. Genetic and phenotypic characteristics of pleomorphic lobular carcinoma in situ of the breast. Am J Surg Pathol. 2009;33(11):1683–94.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Reis-Filho JS, Simpson PT, Jones C, Steele D, Mackay A, Iravani M, et al. Pleomorphic lobular carcinoma of the breast: role of comprehensive molecular pathology in characterization of an entity. J Pathol. 2005;207(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  118. Vargas AC, Lakhani SR, Simpson PT. Pleomorphic lobular carcinoma of the breast: molecular pathology and clinical impact. Future Oncol. 2009;5(2):233–43.

    Article  CAS  PubMed  Google Scholar 

  119. Chivukula M, Haynik DM, Brufsky A, Carter G, Dabbs DJ. Pleomorphic lobular carcinoma in situ (PLCIS) on breast core needle biopsies: clinical significance and immunoprofile. Am J Surg Pathol. 2008;32(11):1721–6.

    Article  PubMed  Google Scholar 

  120. Weidner N, Semple JP. Pleomorphic variant of invasive lobular carcinoma of the breast. Hum Pathol. 1992;23(10):1167–71.

    Article  CAS  PubMed  Google Scholar 

  121. Simpson PT, Reis-Filho JS, Lambros MB, Jones C, Steele D, Mackay A, et al. Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol. 2008;215(3):231–44.

    Article  CAS  PubMed  Google Scholar 

  122. Clement PB, Azzopardi JG. Microglandular adenosis of the breast—a lesion simulating tubular carcinoma. Histopathology. 1983;7(2):169–80.

    Article  CAS  PubMed  Google Scholar 

  123. Rosen PP. Microglandular adenosis. A benign lesion simulating invasive mammary carcinoma. Am J Surg Pathol. 1983;7(2):137–44.

    Google Scholar 

  124. Tavassoli FA, Norris HJ. Microglandular adenosis of the breast. A clinicopathologic study of 11 cases with ultrastructural observations. Am J Surg Pathol. 1983;7(8):731–7.

    Article  CAS  PubMed  Google Scholar 

  125. Acs G, Simpson JF, Bleiweiss IJ, Hugh J, Reynolds C, Olson S, et al. Microglandular adenosis with transition into adenoid cystic carcinoma of the breast. Am J Surg Pathol. 2003;27(8):1052–60.

    Article  PubMed  Google Scholar 

  126. Koenig C, Dadmanesh F, Bratthauer GL, Tavassoli FA. Carcinoma arising in microglandular adenosis: an immunohistochemical analysis of 20 intraepithelial and invasive neoplasms. Int J Surg Pathol. 2000;8(4):303–15.

    Article  PubMed  Google Scholar 

  127. Khalifeh IM, Albarracin C, Diaz LK, Symmans FW, Edgerton ME, Hwang RF, et al. Clinical, histopathologic, and immunohistochemical features of microglandular adenosis and transition into in situ and invasive carcinoma. Am J Surg Pathol. 2008;32(4):544–52.

    Article  PubMed  Google Scholar 

  128. Pal SK, Lau SK, Kruper L, Nwoye U, Garberoglio C, Gupta RK, et al. Papillary carcinoma of the breast: an overview. Breast Cancer Res Treat. 2010;122(3):637–45.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Rakha EA, Gandhi N, Climent F, van Deurzen CH, Haider SA, Dunk L, et al. Encapsulated papillary carcinoma of the breast: an invasive tumor with excellent prognosis. Am J Surg Pathol. 2011;35(8):1093–103.

    Article  PubMed  Google Scholar 

  130. Wynveen CA, Nehhozina T, Akram M, Hassan M, Norton L, Van Zee KJ, et al. Intracystic papillary carcinoma of the breast: an in situ or invasive tumor? Results of immunohistochemical analysis and clinical follow-up. Am J Surg Pathol. 2011;35(1):1–14.

    Article  PubMed  Google Scholar 

  131. Collins LC, Carlo VP, Hwang H, Barry TS, Gown AM, Schnitt SJ. Intracystic papillary carcinomas of the breast: a reevaluation using a panel of myoepithelial cell markers. Am J Surg Pathol. 2006;30(8):1002–7.

    Article  PubMed  Google Scholar 

  132. Collins LC, Schnitt SJ. Papillary lesions of the breast: selected diagnostic and management issues. Histopathology. 2008;52(1):20–9.

    Article  CAS  PubMed  Google Scholar 

  133. Hill CB, Yeh IT. Myoepithelial cell staining patterns of papillary breast lesions: from intraductal papillomas to invasive papillary carcinomas. Am J Clin Pathol. 2005;123(1):36–44.

    Article  PubMed  Google Scholar 

  134. Mulligan AM, O’Malley FP. Metastatic potential of encapsulated (intracystic) papillary carcinoma of the breast: a report of 2 cases with axillary lymph node micrometastases. Int J Surg Pathol. 2007;15(2):143–7.

    Article  PubMed  Google Scholar 

  135. Tan PH, Schnitt SJ, van de Vijver MJ, Ellis IO, Lakhani SR. Papillary and neuroendocrine breast lesions: the WHO stance. Histopathology. 2015;66(6):761–70.

    Article  PubMed  Google Scholar 

  136. Nassar H, Qureshi H, Adsay NV, Visscher D. Clinicopathologic analysis of solid papillary carcinoma of the breast and associated invasive carcinomas. Am J Surg Pathol. 2006;30(4):501–7.

    Article  PubMed  Google Scholar 

  137. Piscuoglio S, Ng CK, Martelotto LG, Eberle CA, Cowell CF, Natrajan R, et al. Integrative genomic and transcriptomic characterization of papillary carcinomas of the breast. Mol Oncol. 2014;8(8):1588–602.

    Article  CAS  PubMed  Google Scholar 

  138. Rakha EA, Badve S, Eusebi V, Reis-Filho JS, Fox SB, Dabbs DJ, et al. Breast lesions of uncertain malignant nature and limited metastatic potential: proposals to improve their recognition and clinical management. Histopathology. 2015.

    Google Scholar 

  139. Ellis IO, Galea M, Broughton N, Locker A, Blamey RW, Elston CW. Pathological prognostic factors in breast cancer. II. Histological type. Relationship with survival in a large study with long-term follow-up. Histopathology. 1992;20(6):479–89.

    Article  CAS  PubMed  Google Scholar 

  140. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ. Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22(8):1736–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Marchiò C, Reis-Filho JS. Molecular diagnosis of breast cancer. Diagn Mol Pathol. 2008.

    Google Scholar 

  142. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  143. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 2006;7:96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100(14):8418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene. 2006;25(28):3994–4008.

    Article  CAS  PubMed  Google Scholar 

  149. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24(29):4660–71.

    Article  CAS  PubMed  Google Scholar 

  150. Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, et al. A refined molecular taxonomy of breast cancer. Oncogene. 2012;31(9):1196–206.

    Article  CAS  PubMed  Google Scholar 

  151. Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, et al. Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res. 2009;15(7):2302–10.

    Article  CAS  PubMed  Google Scholar 

  152. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26(15):2568–81.

    Article  PubMed  Google Scholar 

  153. Rakha EA, Tan DS, Foulkes WD, Ellis IO, Tutt A, Nielsen TO, et al. Are triple-negative tumours and basal-like breast cancer synonymous? Breast Cancer Res. 2007;9(6):404; author reply 5.

    Google Scholar 

  154. Prat A, Adamo B, Cheang MC, Anders CK, Carey LA, Perou CM. Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist. 2013;18(2):123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Holstege H, Horlings HM, Velds A, Langerod A, Borresen-Dale AL, van de Vijver MJ, et al. BRCA1-mutated and basal-like breast cancers have similar aCGH profiles and a high incidence of protein truncating TP53 mutations. BMC Cancer. 2010;10:654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4(10):814–9.

    Article  CAS  PubMed  Google Scholar 

  157. Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene. 2006;25(43):5846–53.

    Article  CAS  PubMed  Google Scholar 

  158. Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D, et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene. 2007;26(14):2126–32.

    Article  CAS  PubMed  Google Scholar 

  159. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2014;21(7):1688–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Lehmann BD, Pietenpol JA. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol. 2014;232(2):142–50.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19(19):5533–40.

    Article  CAS  PubMed  Google Scholar 

  163. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E, et al. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res. 2006;16(12):1465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ali H, Rueda OM, Chin SF, Curtis C, Dunning MJ, Aparicio S, et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biol. 2014;15(8):431.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  CAS  Google Scholar 

  167. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19(5):403–10.

    Article  CAS  PubMed  Google Scholar 

  168. Fulford LG, Easton DF, Reis-Filho JS, Sofronis A, Gillett CE, Lakhani SR, et al. Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology. 2006;49(1):22–34.

    Article  CAS  PubMed  Google Scholar 

  169. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.

    Article  PubMed  Google Scholar 

  170. Mohammed ZM, Going JJ, Edwards J, Elsberger B, Doughty JC, McMillan DC. The relationship between components of tumour inflammatory cell infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer. 2012;107(5):864–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105–13.

    Article  CAS  PubMed  Google Scholar 

  172. Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, et al. CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 2013;123(7):2873–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25(8):1544–50.

    Article  CAS  PubMed  Google Scholar 

  174. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin Oncol. 2013;31(7):860–7.

    Article  CAS  PubMed  Google Scholar 

  175. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2014;26(2):259–71.

    Article  PubMed  Google Scholar 

  176. Weigelt B, Horlings HM, Kreike B, Hayes MM, Hauptmann M, Wessels LF, et al. Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol. 2008;216(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  177. Bertucci F, Orsetti B, Negre V, Finetti P, Rouge C, Ahomadegbe JC, et al. Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles. Oncogene. 2008;27(40):5359–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gruel N, Lucchesi C, Raynal V, Rodrigues MJ, Pierron G, Goudefroye R, et al. Lobular invasive carcinoma of the breast is a molecular entity distinct from luminal invasive ductal carcinoma. Eur J Cancer. 2010;46(13):2399–407.

    Article  CAS  PubMed  Google Scholar 

  179. Lopez-Garcia MA, Geyer FC, Natrajan R, Kreike B, Mackay A, Grigoriadis A, et al. Transcriptomic analysis of tubular carcinomas of the breast reveals similarities and differences with molecular subtype-matched ductal and lobular carcinomas. J Pathol. 2010;222(1):64–75.

    CAS  PubMed  Google Scholar 

  180. Vincent-Salomon A, Gruel N, Lucchesi C, MacGrogan G, Dendale R, Sigal-Zafrani B, et al. Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity. Breast Cancer Res. 2007;9(2):R24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Weigelt B, Geyer FC, Horlings HM, Kreike B, Halfwerk H, Reis-Filho JS. Mucinous and neuroendocrine breast carcinomas are transcriptionally distinct from invasive ductal carcinomas of no special type. Mod Pathol. 2009;22(11):1401–14.

    Article  CAS  PubMed  Google Scholar 

  182. Lacroix-Triki M, Suarez PH, MacKay A, Lambros MB, Natrajan R, Savage K, et al. Mucinous carcinoma of the breast is genomically distinct from invasive ductal carcinomas of no special type. J Pathol. 2010;222(3):282–98.

    Article  CAS  PubMed  Google Scholar 

  183. Marchio C, Iravani M, Natrajan R, Lambros MB, Geyer FC, Savage K, et al. Mixed micropapillary-ductal carcinomas of the breast: a genomic and immunohistochemical analysis of morphologically distinct components. J Pathol. 2009;218(3):301–15.

    Article  CAS  PubMed  Google Scholar 

  184. Marchio C, Iravani M, Natrajan R, Lambros MB, Savage K, Tamber N, et al. Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol. 2008;215(4):398–410.

    Article  CAS  PubMed  Google Scholar 

  185. Duprez R, Wilkerson PM, Lacroix-Triki M, Lambros MB, Mackay A, Hern RA, et al. Immunophenotypic and genomic characterization of papillary carcinomas of the breast. J Pathol. 2011;226(3):427–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Weigelt B, Geyer FC, Reis-Filho JS. Histological types of breast cancer: how special are they? Mol Oncol. 2010;4(3):192–208.

    Article  CAS  PubMed  Google Scholar 

  187. Weigelt B, Reis-Filho JS. Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol. 2009;6(12):718–30.

    Article  CAS  PubMed  Google Scholar 

  188. Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci USA. 2009;106(44):18740–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2(5):367–76.

    Article  CAS  PubMed  Google Scholar 

  190. Weigelt B, Geyer FC, Natrajan R, Lopez-Garcia MA, Ahmad AS, Savage K, et al. The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade-and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol. 2010;220(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  191. Natrajan R, Wilkerson PM, Marchio C, Piscuoglio S, Ng CK, Wai P, et al. Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast. J Pathol. 2014;232(5):553–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wetterskog D, Lopez-Garcia MA, Lambros MB, A’Hern R, Geyer FC, Milanezi F, et al. Adenoid cystic carcinomas constitute a genomically distinct subgroup of triple-negative and basal-like breast cancers. J Pathol. 2011;226(1):84–96.

    Article  PubMed  CAS  Google Scholar 

  193. Reis-Filho JS, Lakhani SR. Breast cancer special types: why bother? J Pathol. 2008;216(4):394–8.

    Article  CAS  PubMed  Google Scholar 

  194. Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol. 2010;220(2):263–80.

    CAS  PubMed  Google Scholar 

  195. Sarrio D, Perez-Mies B, Hardisson D, Moreno-Bueno G, Suarez A, Cano A, et al. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene. 2004;23(19):3272–83.

    Article  CAS  PubMed  Google Scholar 

  196. Sardanelli F, Boetes C, Borisch B, Decker T, Federico M, Gilbert FJ, et al. Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer. 2010;46(8):1296–316.

    Article  PubMed  Google Scholar 

  197. Balmativola D, Marchio C, Maule M, Chiusa L, Annaratone L, Maletta F, et al. Pathological non-response to chemotherapy in a neoadjuvant setting of breast cancer: an inter-institutional study. Breast Cancer Res Treat. 2014;148(3):511–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Loibl S, Volz C, Mau C, Blohmer JU, Costa SD, Eidtmann H, et al. Response and prognosis after neoadjuvant chemotherapy in 1,051 patients with infiltrating lobular breast carcinoma. Breast Cancer Res Treat. 2014;144(1):153–62.

    Article  CAS  PubMed  Google Scholar 

  199. Lien HC, Chen YL, Juang YL, Jeng YM. Frequent alterations of HER2 through mutation, amplification, or overexpression in pleomorphic lobular carcinoma of the breast. Breast Cancer Res Treat. 2015;150(2):447–55.

    Article  CAS  PubMed  Google Scholar 

  200. Ciriello G, Sinha R, Hoadley KA, Jacobsen AS, Reva B, Perou CM, et al. The molecular diversity of luminal A breast tumors. Breast Cancer Res Treat. 2013;141(3):409–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ross JS, Wang K, Sheehan CE, Boguniewicz AB, Otto G, Downing SR, et al. Relapsed classic E-cadherin (CDH1)-mutated invasive lobular breast cancer shows a high frequency of HER2 (ERBB2) gene mutations. Clin Cancer Res. 2013;19(10):2668–76.

    Article  CAS  PubMed  Google Scholar 

  202. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.

    Article  CAS  PubMed  Google Scholar 

  203. Nishimukai A, Yagi T, Yanai A, Miyagawa Y, Enomoto Y, Murase K, et al. High Ki-67 expression and low progesterone receptor expression could independently lead to a worse prognosis for postmenopausal patients with estrogen receptor-positive and HER2-negative breast cancer. Clin Breast Cancer. 2015;15(3):204–11.

    Article  CAS  PubMed  Google Scholar 

  204. Prat A, Cheang MC, Martin M, Parker JS, Carrasco E, Caballero R, et al. Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal A breast cancer. J Clin Oncol. 2013;31(2):203–9.

    Article  CAS  PubMed  Google Scholar 

  205. Sato K, Miyashita M, Ishida T, Suzuki A, Tada H, Watanabe G, et al. Prognostic significance of the progesterone receptor status in Ki67-high and-low luminal B-like HER2-negative breast cancers. Breast Cancer. 2014.

    Google Scholar 

  206. Rakha EA, Lee AH, Evans AJ, Menon S, Assad NY, Hodi Z, et al. Tubular carcinoma of the breast: further evidence to support its excellent prognosis. J Clin Oncol. 2010;28(1):99–104.

    Article  PubMed  Google Scholar 

  207. Barkley CR, Ligibel JA, Wong JS, Lipsitz S, Smith BL, Golshan M. Mucinous breast carcinoma: a large contemporary series. Am J Surg. 2008;196(4):549–51.

    Article  PubMed  Google Scholar 

  208. Li CI, Uribe DJ, Daling JR. Clinical characteristics of different histologic types of breast cancer. Br J Cancer. 2005;93(9):1046–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Vo T, Xing Y, Meric-Bernstam F, Mirza N, Vlastos G, Symmans WF, et al. Long-term outcomes in patients with mucinous, medullary, tubular, and invasive ductal carcinomas after lumpectomy. Am J Surg. 2007;194(4):527–31.

    Article  PubMed  Google Scholar 

  210. Capella C, Eusebi V, Mann B, Azzopardi JG. Endocrine differentiation in mucoid carcinoma of the breast. Histopathology. 1980;4(6):613–30.

    Article  CAS  PubMed  Google Scholar 

  211. Righi L, Sapino A, Marchio C, Papotti M, Bussolati G. Neuroendocrine differentiation in breast cancer: established facts and unresolved problems. Semin Diagn Pathol. 2010;27(1):69–76.

    Article  PubMed  Google Scholar 

  212. Kehr EL, Jorns JM, Ang D, Warrick A, Neff T, Degnin M, et al. Mucinous breast carcinomas lack PIK3CA and AKT1 mutations. Hum Pathol. 2012;43(12):2207–12.

    Article  CAS  PubMed  Google Scholar 

  213. Peterse JL. Breast carcinomas with an unexpected inside out growth pattern. Rotation of polarisation associated with angioinvasion. Pathol Res Pract. 1993;189:780.

    Google Scholar 

  214. Li YS, Kaneko M, Sakamoto DG, Takeshima Y, Inai K. The reversed apical pattern of MUC1 expression is characteristics of invasive micropapillary carcinoma of the breast. Breast Cancer. 2006;13(1):58–63.

    Article  PubMed  Google Scholar 

  215. Luna-More S, Gonzalez B, Acedo C, Rodrigo I, Luna C. Invasive micropapillary carcinoma of the breast. A new special type of invasive mammary carcinoma. Pathol Res Pract. 1994;190(7):668–74.

    Article  CAS  PubMed  Google Scholar 

  216. Nassar H, Pansare V, Zhang H, Che M, Sakr W, Ali-Fehmi R, et al. Pathogenesis of invasive micropapillary carcinoma: role of MUC1 glycoprotein. Mod Pathol. 2004;17(9):1045–50.

    Article  CAS  PubMed  Google Scholar 

  217. Kim MJ, Gong G, Joo HJ, Ahn SH, Ro JY. Immunohistochemical and clinicopathologic characteristics of invasive ductal carcinoma of breast with micropapillary carcinoma component. Arch Pathol Lab Med. 2005;129(10):1277–82.

    PubMed  Google Scholar 

  218. Nassar H, Wallis T, Andea A, Dey J, Adsay V, Visscher D. Clinicopathologic analysis of invasive micropapillary differentiation in breast carcinoma. Mod Pathol. 2001;14(9):836–41.

    Article  CAS  PubMed  Google Scholar 

  219. Vingiani A, Maisonneuve P, Dell’orto P, Farante G, Rotmensz N, Lissidini G, et al. The clinical relevance of micropapillary carcinoma of the breast: a case-control study. Histopathology. 2013;63(2):217–24.

    Article  PubMed  Google Scholar 

  220. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.

    Article  PubMed  Google Scholar 

  221. Di Cosimo S, Baselga J. Phosphoinositide 3-kinase mutations in breast cancer: a “good” activating mutation? Clin Cancer Res. 2009;15(16):5017–9.

    Article  PubMed  CAS  Google Scholar 

  222. Cubilla AL, Woodruff JM. Primary carcinoid tumor of the breast. A report of eight patients. Am J Surg Pathol. 1977;1:283–92.

    Article  Google Scholar 

  223. Dellapasqua S, Maisonneuve P, Viale G, Pruneri G, Mazzarol G, Ghisini R, et al. Immunohistochemically defined subtypes and outcome of apocrine breast cancer. Clin Breast Cancer. 2013;13(2):95–102.

    Article  CAS  PubMed  Google Scholar 

  224. Tsutsumi Y. Apocrine carcinoma as triple-negative breast cancer: novel definition of apocrine-type carcinoma as estrogen/progesterone receptor-negative and androgen receptor-positive invasive ductal carcinoma. Jpn J Clin Oncol. 2012;42(5):375–86.

    Article  PubMed  Google Scholar 

  225. Vranic S, Marchio C, Castellano I, Botta C, Scalzo MS, Bender RP, et al. Immunohistochemical and molecular profiling of histologically defined apocrine carcinomas of the breast. Hum Pathol. 2015;46(9):1350–9.

    Article  CAS  PubMed  Google Scholar 

  226. Vranic S, Schmitt F, Sapino A, Costa JL, Reddy S, Castro M, et al. Apocrine carcinoma of the breast: a comprehensive review. Histol Histopathol. 2013;28(11):1393–409.

    PubMed  Google Scholar 

  227. Lehmann-Che J, Hamy AS, Porcher R, Barritault M, Bouhidel F, Habuellelah H, et al. Molecular apocrine breast cancers are aggressive estrogen receptor negative tumors overexpressing either HER2 or GCDFP15. Breast Cancer Res. 2013;15(3):R37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Weigelt B, Eberle C, Cowell CF, Ng CK, Reis-Filho JS. Metaplastic breast carcinoma: more than a special type. Nat Rev Cancer. 2015;14(3):147–8.

    Article  CAS  Google Scholar 

  229. Weigelt B, Ng CK, Shen R, Popova T, Schizas M, Natrajan R, et al. Metaplastic breast carcinomas display genomic and transcriptomic heterogeneity [corrected]. Mod Pathol. 2015;28(3):340–51.

    Article  CAS  PubMed  Google Scholar 

  230. Lester TR, Hunt KK, Nayeemuddin KM, Bassett RL Jr, Gonzalez-Angulo AM, Feig BW, et al. Metaplastic sarcomatoid carcinoma of the breast appears more aggressive than other triple receptor-negative breast cancers. Breast Cancer Res Treat. 2012;131(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  231. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69(10):4116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lien HC, Lin CW, Mao TL, Kuo SH, Hsiao CH, Huang CS. p53 overexpression and mutation in metaplastic carcinoma of the breast: genetic evidence for a monoclonal origin of both the carcinomatous and the heterogeneous sarcomatous components. J Pathol. 2004;204(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  233. Weigelt B, Kreike B, Reis-Filho JS. Metaplastic breast carcinomas are basal-like breast cancers: a genomic profiling analysis. Breast Cancer Res Treat. 2009;117(2):273–80.

    Article  CAS  PubMed  Google Scholar 

  234. Gerhard R, Ricardo S, Albergaria A, Gomes M, Silva AR, Logullo AF, et al. Immunohistochemical features of claudin-low intrinsic subtype in metaplastic breast carcinomas. Breast. 2012;21(3):354–60.

    Article  PubMed  Google Scholar 

  235. Kim HM, Kim do H, Jung WH, Koo JS. Molecular classification of metaplastic carcinoma using surrogate immunohistochemical staining. Pathobiology. 2013;81(2):69–77.

    Google Scholar 

  236. Rito M, Schmitt F, Pinto AE, Andre S. Fibromatosis-like metaplastic carcinoma of the breast has a claudin-low immunohistochemical phenotype. Virchows Arch. 2014;465(2):185–91.

    Article  CAS  PubMed  Google Scholar 

  237. Geyer FC, Weigelt B, Natrajan R, Lambros MB, de Biase D, Vatcheva R, et al. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J Pathol. 2010;220(5):562–73.

    Article  CAS  PubMed  Google Scholar 

  238. Reis-Filho JS, Pinheiro C, Lambros MB, Milanezi F, Carvalho S, Savage K, et al. EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J Pathol. 2006;209(4):445–53.

    Article  CAS  PubMed  Google Scholar 

  239. Sneige N, Yaziji H, Mandavilli SR, Perez ER, Ordonez NG, Gown AM, et al. Low-grade (fibromatosis-like) spindle cell carcinoma of the breast. Am J Surg Pathol. 2001;25(8):1009–16.

    Article  CAS  PubMed  Google Scholar 

  240. Marchio C, Weigelt B, Reis-Filho JS. Adenoid cystic carcinomas of the breast and salivary glands (or ‘The strange case of Dr Jekyll and Mr Hyde’ of exocrine gland carcinomas). J Clin Pathol. 2010;63(3):220–8.

    Article  PubMed  Google Scholar 

  241. Ellis IO, Pinder S, Lee AHS. Tumors of the breast. Aadenoid cystic carcinoma. In: Fletcher C, editor. Diagnostic histopathology of tumors. London: Churchill Livingstone Elsevier; 2007. p. 953–4.

    Google Scholar 

  242. Bennett AK, Mills SE, Wick MR. Salivary-type neoplasms of the breast and lung. Semin Diagn Pathol. 2003;20(4):279–304.

    Article  PubMed  Google Scholar 

  243. Rosen PP. Adenoid cystic carcinoma. In: Rosen’s breast pathology. Philadelphia: Lippincott Williams and Wilkins; 2009. p. 590–604.

    Google Scholar 

  244. Tavassoli FA, Norris HJ. Mammary adenoid cystic carcinoma with sebaceous differentiation. A morphologic study of the cell types. Arch Pathol Lab Med. 1986;110(11):1045–53.

    CAS  PubMed  Google Scholar 

  245. Ro JY, Silva EG, Gallager HS. Adenoid cystic carcinoma of the breast. Hum Pathol. 1987;18(12):1276–81.

    Article  CAS  PubMed  Google Scholar 

  246. Brill LB 2nd, Kanner WA, Fehr A, Andren Y, Moskaluk CA, Loning T, et al. Analysis of MYB expression and MYB-NFIB gene fusions in adenoid cystic carcinoma and other salivary neoplasms. Mod Pathol. 2011;24(9):1169–76.

    Article  CAS  PubMed  Google Scholar 

  247. D’Alfonso TM, Mosquera JM, MacDonald TY, Padilla J, Liu YF, Rubin MA, et al. MYB-NFIB gene fusion in adenoid cystic carcinoma of the breast with special focus paid to the solid variant with basaloid features. Hum Pathol. 2014;45(11):2270–80.

    Article  PubMed  CAS  Google Scholar 

  248. Wetterskog D, Wilkerson PM, Rodrigues DN, Lambros MB, Fritchie K, Andersson MK, et al. Mutation profiling of adenoid cystic carcinomas from multiple anatomical sites identifies mutations in the RAS pathway, but no KIT mutations. Histopathology. 2013;62(4):543–50.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Fusco N, Colombo PE, Martelotto LG, De Filippo MR, Piscuoglio S, Ng CK, et al. Resolving quandaries: basaloid adenoid cystic carcinoma or breast cylindroma? The role of massively parallel sequencing. Histopathology. 2015.

    Google Scholar 

  250. Persson M, Andren Y, Moskaluk CA, Frierson HF Jr, Cooke SL, Futreal PA, et al. Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma. Genes Chromosom Cancer. 2012;51(8):805–17.

    Article  CAS  PubMed  Google Scholar 

  251. Horlings HM, Weigelt B, Anderson EM, Lambros MB, Mackay A, Natrajan R, et al. Genomic profiling of histological special types of breast cancer. Breast Cancer Res Treat. 2013;142(2):257–69.

    Article  CAS  PubMed  Google Scholar 

  252. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9.

    CAS  PubMed  Google Scholar 

  253. Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R, et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene. 2010;29(14):2013–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. El-Rifai W, Rutherford S, Knuutila S, Frierson HF Jr, Moskaluk CA. Novel DNA copy number losses in chromosome 12q12-q13 in adenoid cystic carcinoma. Neoplasia. 2001;3(3):173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ho AS, Kannan K, Roy DM, Morris LG, Ganly I, Katabi N, et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet. 2013;45(7):791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Stephens PJ, Davies HR, Mitani Y, Van Loo P, Shlien A, Tarpey PS, et al. Whole exome sequencing of adenoid cystic carcinoma. J Clin Invest. 2013;123(7):2965–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Papaspyrou G, Hoch S, Rinaldo A, Rodrigo JP, Takes RP, van Herpen C, et al. Chemotherapy and targeted therapy in adenoid cystic carcinoma of the head and neck: a review. Head Neck. 2010;33(6):905–11.

    Article  PubMed  Google Scholar 

  258. Yerushalmi R, Hayes MM, Gelmon KA. Breast carcinoma—rare types: review of the literature. Ann Oncol. 2009;20(11):1763–70.

    Article  CAS  PubMed  Google Scholar 

  259. Foschini MP, Krausz T. Salivary gland-type tumors of the breast: a spectrum of benign and malignant tumors including “triple negative carcinomas” of low malignant potential. Semin Diagn Pathol. 2010;27(1):77–90.

    Article  PubMed  Google Scholar 

  260. Coyne JD, Dervan PA. Primary acinic cell carcinoma of the breast. J Clin Pathol. 2002;55(7):545–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Huo L, Bell D, Qiu H, Sahin A, Wu Y, Sneige N. Paneth cell-like eosinophilic cytoplasmic granules in breast carcinoma. Ann Diagn Pathol. 2010;15(2):84–92.

    Article  PubMed  Google Scholar 

  262. Peintinger F, Leibl S, Reitsamer R, Moinfar F. Primary acinic cell carcinoma of the breast: a case report with long-term follow-up and review of the literature. Histopathology. 2004;45(6):645–8.

    Article  CAS  PubMed  Google Scholar 

  263. Damiani S, Pasquinelli G, Lamovec J, Peterse JL, Eusebi V. Acinic cell carcinoma of the breast: an immunohistochemical and ultrastructural study. Virchows Arch. 2000;437(1):74–81.

    Article  CAS  PubMed  Google Scholar 

  264. Limite G, Di Micco R, Esposito E, Sollazzo V, Cervotti M, Pettinato G, et al. Acinic cell carcinoma of the breast: review of the literature. Int J Surg. 2014;12(Suppl 1):S35–9.

    Article  PubMed  Google Scholar 

  265. Piscuoglio S, Hodi Z, Katabi N, Guerini-Rocco E, Macedo GS, Ng CK, et al. Are acinic cell carcinomas of the breast and salivary glands distinct diseases? Histopathology. 2014;67(4):529–37.

    Article  Google Scholar 

  266. Guerini-Rocco E, Hodi Z, Piscuoglio S, Ng CK, Rakha EA, Schultheis AM, et al. The repertoire of somatic genetic alterations of acinic cell carcinomas of the breast: an exploratory, hypothesis-generating study. J Pathol. 2015.

    Google Scholar 

  267. Ripamonti CB, Colombo M, Mondini P, Siranoush M, Peissel B, Bernard L, et al. First description of an acinic cell carcinoma of the breast in a BRCA1 mutation carrier: a case report. BMC Cancer. 2013;13:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Weinreb I, Piscuoglio S, Martelotto LG, Waggott D, Ng CK, Perez-Ordonez B, et al. Hotspot activating PRKD1 somatic mutations in polymorphous low-grade adenocarcinomas of the salivary glands. Nat Genet. 2014.

    Google Scholar 

  269. Robertson FM, Petricoin Iii EF, Van Laere SJ, Bertucci F, Chu K, Fernandez SV, et al. Presence of anaplastic lymphoma kinase in inflammatory breast cancer. Springerplus. 2013;2:497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Hanna MG, Najfeld V, Irie HY, Tripodi J, Nayak A. Analysis of ALK gene in 133 patients with breast cancer revealed polysomy of chromosome 2 and no ALK amplification. Springerplus. 2015;4:439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Krishnamurthy S, Woodward W, Yang W, Reuben JM, Tepperberg J, Ogura D, et al. Status of the anaplastic lymphoma kinase (ALK) gene in inflammatory breast carcinoma. Springerplus. 2013;2:409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Ross JS, Ali SM, Wang K, Khaira D, Palma NA, Chmielecki J, et al. Comprehensive genomic profiling of inflammatory breast cancer cases reveals a high frequency of clinically relevant genomic alterations. Breast Cancer Res Treat. 2015;154(1):155–62.

    Article  CAS  PubMed  Google Scholar 

  273. Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12(4):207.

    PubMed  PubMed Central  Google Scholar 

  274. Buerger H, Mommers EC, Littmann R, Simon R, Diallo R, Poremba C, et al. Ductal invasive G2 and G3 carcinomas of the breast are the end stages of at least two different lines of genetic evolution. J Pathol. 2001;194(2):165–70.

    Article  CAS  PubMed  Google Scholar 

  275. Roylance R, Gorman P, Harris W, Liebmann R, Barnes D, Hanby A, et al. Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res. 1999;59(7):1433–6.

    CAS  PubMed  Google Scholar 

  276. Natrajan R, Lambros MB, Rodriguez-Pinilla SM, Moreno-Bueno G, Tan DS, Marchio C, et al. Tiling path genomic profiling of grade 3 invasive ductal breast cancers. Clin Cancer Res. 2009;15(8):2711–22.

    Article  CAS  PubMed  Google Scholar 

  277. Vincent-Salomon A, Lucchesi C, Gruel N, Raynal V, Pierron G, Goudefroye R, et al. Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin Cancer Res. 2008;14(7):1956–65.

    Article  CAS  PubMed  Google Scholar 

  278. Sotiriou C, Piccart MJ. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer. 2007;7(7):545–53.

    Article  CAS  PubMed  Google Scholar 

  279. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98(4):262–72.

    Article  CAS  PubMed  Google Scholar 

  280. Cleton-Jansen AM, Buerger H, Haar N, Philippo K, van de Vijver MJ, Boecker W, et al. Different mechanisms of chromosome 16 loss of heterozygosity in well-versus poorly differentiated ductal breast cancer. Genes Chromosom Cancer. 2004;41(2):109–16.

    Article  CAS  PubMed  Google Scholar 

  281. Flagiello D, Gerbault-Seureau M, Sastre-Garau X, Padoy E, Vielh P, Dutrillaux B. Highly recurrent der (1; 16)(q10; p10) and other 16q arm alterations in lobular breast cancer. Genes Chromosom Cancer. 1998;23(4):300–6.

    Article  CAS  PubMed  Google Scholar 

  282. Tsuda H, Takarabe T, Fukutomi T, Hirohashi S. der(16)t(1;16)/der(1;16) in breast cancer detected by fluorescence in situ hybridization is an indicator of better patient prognosis. Genes Chromosom Cancer. 1999;24(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  283. Dent R, Hanna WM, Trudeau M, Rawlinson E, Sun P, Narod SA. Time to disease recurrence in basal-type breast cancers: effects of tumor size and lymph node status. Cancer. 2009;115(21):4917–23.

    Article  PubMed  Google Scholar 

  284. Foulkes WD, Reis-Filho JS, Narod SA. Tumor size and survival in breast cancer—a reappraisal. Nat Rev Clin Oncol. 2010;7(6):348–53.

    Article  CAS  PubMed  Google Scholar 

  285. Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res. 2008;14(16):5158–65.

    Article  CAS  PubMed  Google Scholar 

  286. Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 2008;10(4):R65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Bossuyt V, Provenzano E, Symmans WF, Boughey JC, Coles C, Curigliano G, et al. Recommendations for standardized pathological characterization of residual disease for neoadjuvant clinical trials of breast cancer by the BIG-NABCG collaboration. Ann Oncol. 2015;26(7):1280–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Provenzano E, Bossuyt V, Viale G, Cameron D, Badve S, Denkert C, et al. Standardization of pathologic evaluation and reporting of postneoadjuvant specimens in clinical trials of breast cancer: recommendations from an international working group. Mod Pathol. 2015;28(9):1185–201.

    Article  PubMed  Google Scholar 

  289. Leonard GD, Swain SM. Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst. 2004;96(12):906–20.

    Article  PubMed  Google Scholar 

  290. Marchio C, Balmativola D, Castiglione R, Annaratone L, Sapino A. Predictive diagnostic pathology in the target therapy era in breast cancer. Curr Drug Targets. 2015.

    Google Scholar 

  291. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28(16):2784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  292. Viale G, Regan MM, Maiorano E, Mastropasqua MG, Dell’Orto P, Rasmussen BB, et al. Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1–98. J Clin Oncol. 2007;25(25):3846–52.

    Article  PubMed  Google Scholar 

  293. Iwamoto T, Booser D, Valero V, Murray JL, Koenig K, Esteva FJ, et al. Estrogen receptor (ER) mRNA and ER-related gene expression in breast cancers that are 1% to 10% ER-positive by immunohistochemistry. J Clin Oncol. 2012;30(7):729–34.

    Article  PubMed  Google Scholar 

  294. Yi M, Huo L, Koenig KB, Mittendorf EA, Meric-Bernstam F, Kuerer HM, et al. Which threshold for ER positivity? a retrospective study based on 9639 patients. Ann Oncol. 2014;25(5):1004–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Sapino A, Goia M, Recupero D, Marchio C. Current challenges for HER2 testing in diagnostic pathology: state of the art and controversial issues. Front Oncol. 2013;3:129.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Sapino A, Maletta F, Verdun di Cantogno L, Macri L, Botta C, Gugliotta P, et al. Gene status in HER2 equivocal breast carcinomas: impact of distinct recommendations and contribution of a polymerase chain reaction-based method. Oncologist. 2014;19(11):1118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Bertucci F, Finetti P, Roche H, Le Doussal JM, Marisa L, Martin AL, et al. Comparison of the prognostic value of genomic grade index, Ki67 expression and mitotic activity index in early node-positive breast cancer patients. Ann Oncol. 2012;24(3):625–32.

    Article  PubMed  Google Scholar 

  298. Luporsi E, Andre F, Spyratos F, Martin PM, Jacquemier J, Penault-Llorca F, et al. Ki-67: level of evidence and methodological considerations for its role in the clinical management of breast cancer: analytical and critical review. Breast Cancer Res Treat. 2011;132(3):895–915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  299. Polley MY, Leung SC, McShane LM, Gao D, Hugh JC, Mastropasqua MG, et al. An international Ki67 reproducibility study. J Natl Cancer Inst. 2013;105(24):1897–906.

    Article  PubMed  PubMed Central  Google Scholar 

  300. Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J, et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst. 2011;103(22):1656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Polley MY, Leung SC, Gao D, Mastropasqua MG, Zabaglo LA, Bartlett JM, et al. An international study to increase concordance in Ki67 scoring. Mod Pathol. 2015;28(6):778–86.

    Article  PubMed  Google Scholar 

  302. Sapino A, Annaratone L, Marchio C. Current projects in Pre-analytics: where to go? Recent Results Cancer Res. 2015;199:65–70.

    Article  PubMed  Google Scholar 

  303. Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 2010;70(5):2085–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Marchio C, Lambros MB, Gugliotta P, Di Cantogno LV, Botta C, Pasini B, et al. Does chromosome 17 centromere copy number predict polysomy in breast cancer? A fluorescence in situ hybridization and microarray-based CGH analysis. J Pathol. 2009;219(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  305. Moelans CB, de Weger RA, van Diest PJ. Absence of chromosome 17 polysomy in breast cancer: analysis by CEP17 chromogenic in situ hybridization and multiplex ligation-dependent probe amplification. Breast Cancer Res Treat. 2010;120(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  306. Varga Z, Tubbs RR, Wang Z, Sun Y, Noske A, Kradolfer D, et al. Co-amplification of the HER2 gene and chromosome 17 centromere: a potential diagnostic pitfall in HER2 testing in breast cancer. Breast Cancer Res Treat. 2012;132(3):925–35.

    Article  CAS  PubMed  Google Scholar 

  307. Yeh IT, Martin MA, Robetorye RS, Bolla AR, McCaskill C, Shah RK, et al. Clinical validation of an array CGH test for HER2 status in breast cancer reveals that polysomy 17 is a rare event. Mod Pathol. 2009;22(9):1169–75.

    Article  CAS  PubMed  Google Scholar 

  308. Bhargava R, Dabbs DJ. Interpretation of human epidermal growth factor receptor 2 (HER2) in situ hybridization assays using 2013 update of American Society of Clinical Oncology/College of American Pathologists HER2 Guidelines. J Clin Oncol. 2014;32(17):1855.

    Article  PubMed  Google Scholar 

  309. Brunelli M, Nottegar A, Bogina G, Calio A, Cima L, Eccher A, et al. Monosomy of chromosome 17 in breast cancer during interpretation of HER2 gene amplification. Am J Cancer Res. 2015;5(7):2212–21.

    PubMed  PubMed Central  Google Scholar 

  310. Valent A, Penault-Llorca F, Cayre A, Kroemer G. Change in HER2 (ERBB2) gene status after taxane-based chemotherapy for breast cancer: polyploidization can lead to diagnostic pitfalls with potential impact for clinical management. Cancer Genet. 2013;206(1–2):37–41.

    Article  CAS  PubMed  Google Scholar 

  311. Cottu PH, Asselah J, Lae M, Pierga JY, Dieras V, Mignot L, et al. Intratumoral heterogeneity of HER2/neu expression and its consequences for the management of advanced breast cancer. Ann Oncol. 2008;19(3):595–7.

    Article  CAS  PubMed  Google Scholar 

  312. Hanna WM, Ruschoff J, Bilous M, Coudry RA, Dowsett M, Osamura RY, et al. HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Mod Pathol. 2013;27(1):4–18.

    Article  PubMed  CAS  Google Scholar 

  313. Ng CK, Martelotto LG, Gauthier A, Wen HC, Piscuoglio S, Lim RS, et al. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol. 2015;16:107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  314. Seol H, Lee HJ, Choi Y, Lee HE, Kim YJ, Kim JH, et al. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod Pathol. 2012;25(7):938–48.

    Article  CAS  PubMed  Google Scholar 

  315. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  CAS  PubMed  Google Scholar 

  316. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.

    Article  PubMed  Google Scholar 

  317. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Google Scholar 

  318. Zhang Y, Schnabel CA, Schroeder BE, Jerevall PL, Jankowitz RC, Fornander T, et al. Breast cancer index identifies early-stage estrogen receptor-positive breast cancer patients at risk for early-and late-distant recurrence. Clin Cancer Res. 2013;19(15):4196–205.

    Article  CAS  PubMed  Google Scholar 

  319. Filipits M, Rudas M, Jakesz R, Dubsky P, Fitzal F, Singer CF, et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res. 2011;17(18):6012–20.

    Article  CAS  PubMed  Google Scholar 

  320. Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet. 2011;378(9805):1812–23.

    Article  CAS  PubMed  Google Scholar 

  321. Azim HA Jr, Michiels S, Zagouri F, Delaloge S, Filipits M, Namer M, et al. Utility of prognostic genomic tests in breast cancer practice: the IMPAKT 2012 Working Group Consensus Statement. Ann Oncol. 2013;24(3):647–54.

    Article  PubMed  Google Scholar 

  322. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24(9):2206–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Varga Z, Sinn P, Fritzsche F, von Hochstetter A, Noske A, Schraml P, et al. Comparison of EndoPredict and Oncotype DX test results in hormone receptor positive invasive breast cancer. PLoS ONE. 2013;8(3):e58483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Bartlett JMS, Stein RC, Bayani J, Marshall A, Dunn JA, Campbell AF, et al. Comparison of multiparameter tests in the UK OPTIMA-Prelim trial. Cancer Res. 2014;75(P4–11–07).

    Google Scholar 

  325. Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C. An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol. 2007;8(8):R157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  326. Teschendorff AE, Caldas C. A robust classifier of high predictive value to identify good prognosis patients in ER-negative breast cancer. Breast Cancer Res. 2008;10(4):R73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Yau C, Esserman L, Moore DH, Waldman F, Sninsky J, Benz CC. A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res. 2010;12(5):R85.

    Article  PubMed  PubMed Central  Google Scholar 

  328. Rody A, Karn T, Liedtke C, Pusztai L, Ruckhaeberle E, Hanker L, et al. A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Res. 2011;13(5):R97.

    Article  PubMed  PubMed Central  Google Scholar 

  329. Perez EA, Thompson EA, Ballman KV, Anderson SK, Asmann YW, Kalari KR, et al. Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the North Central Cancer Treatment Group n9831 Adjuvant Trastuzumab Trial. J Clin Oncol. 2015;33(7):701–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486(7403):405–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486(7403):353–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  332. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486(7403):400–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  333. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM, et al. Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res. 2014;20(7):1757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013;4(6):1116–30.

    Article  CAS  PubMed  Google Scholar 

  337. Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013;45(12):1446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013;45(12):1439–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 2012;3(2):224–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  340. Fang Y, Jiang Y, Wang X, Yang X, Gao Y, Wang J. Somatic mutations of the HER2 in metastatic breast cancer. Tumour Biol. 2014;35(12):11851–4.

    Article  CAS  PubMed  Google Scholar 

  341. Park YH, Shin HT, Jung HH, Choi YL, Ahn T, Park K, et al. Role of HER2 mutations in refractory metastatic breast cancers: targeted sequencing results in patients with refractory breast cancer. Oncotarget. 2015;6(31):32027–38.

    PubMed  PubMed Central  Google Scholar 

  342. Eccles DM, Pichert G. Familial non-BRCA1/BRCA2-associated breast cancer. Lancet Oncol. 2005;6(9):705–11.

    Article  CAS  PubMed  Google Scholar 

  343. Honrado E, Benitez J, Palacios J. The molecular pathology of hereditary breast cancer: genetic testing and therapeutic implications. Mod Pathol. 2005;18(10):1305–20.

    Article  CAS  PubMed  Google Scholar 

  344. Farshid G, Balleine RL, Cummings M, Waring P. Morphology of breast cancer as a means of triage of patients for BRCA1 genetic testing. Am J Surg Pathol. 2006;30(11):1357–66.

    Article  PubMed  Google Scholar 

  345. Bane AL, Beck JC, Bleiweiss I, Buys SS, Catalano E, Daly MB, et al. BRCA2 mutation-associated breast cancers exhibit a distinguishing phenotype based on morphology and molecular profiles from tissue microarrays. Am J Surg Pathol. 2007;31(1):121–8.

    Article  PubMed  Google Scholar 

  346. Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M, Parry S, et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res. 2005;11(14):5175–80.

    Article  CAS  PubMed  Google Scholar 

  347. Lord CJ, Tutt AN, Ashworth A. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med. 2015;66:455–70.

    Article  CAS  PubMed  Google Scholar 

  348. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkas K, Roberts J, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371(6):497–506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  349. Nigro DM, Organ CH Jr. Fibroadenoma of the female breast. Some epidemiologic surprises. Postgrad Med. 1976;59(5):113–7.

    Article  CAS  PubMed  Google Scholar 

  350. Jacobs TW, Chen YY, Guinee DG Jr, Holden JA, Cha I, Bauermeister DE, et al. Fibroepithelial lesions with cellular stroma on breast core needle biopsy: are there predictors of outcome on surgical excision? Am J Clin Pathol. 2005;124(3):342–54.

    Article  PubMed  Google Scholar 

  351. Carter BA, Page DL, Schuyler P, Parl FF, Simpson JF, Jensen RA, et al. No elevation in long-term breast carcinoma risk for women with fibroadenomas that contain atypical hyperplasia. Cancer. 2001;92(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  352. Lim WK, Ong CK, Tan J, Thike AA, Ng CC, Rajasegaran V, et al. Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma. Nat Genet. 2014;46(8):877–80.

    Article  CAS  PubMed  Google Scholar 

  353. Makinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334(6053):252–5.

    Article  PubMed  CAS  Google Scholar 

  354. Noguchi S, Yokouchi H, Aihara T, Motomura K, Inaji H, Imaoka S, et al. Progression of fibroadenoma to phyllodes tumor demonstrated by clonal analysis. Cancer. 1995;76(10):1779–85.

    Article  CAS  PubMed  Google Scholar 

  355. Hodges KB, Abdul-Karim FW, Wang M, Lopez-Beltran A, Montironi R, Easley S, et al. Evidence for transformation of fibroadenoma of the breast to malignant phyllodes tumor. Appl Immunohistochem Mol Morphol. 2009;17(4):345–50.

    Article  PubMed  Google Scholar 

  356. Tan PH, Thike AA, Tan WJ, Thu MM, Busmanis I, Li H, et al. Predicting clinical behaviour of breast phyllodes tumours: a nomogram based on histological criteria and surgical margins. J Clin Pathol. 2011;65(1):69–76.

    Article  PubMed  Google Scholar 

  357. Belkacemi Y, Bousquet G, Marsiglia H, Ray-Coquard I, Magne N, Malard Y, et al. Phyllodes tumor of the breast. Int J Radiat Oncol Biol Phys. 2008;70(2):492–500.

    Article  PubMed  Google Scholar 

  358. Ben Hassouna J, Damak T, Gamoudi A, Chargui R, Khomsi F, Mahjoub S, et al. Phyllodes tumors of the breast: a case series of 106 patients. Am J Surg. 2006;192(2):141–7.

    Google Scholar 

  359. Tan PH, Thike AA, Tan WJ, Thu MM, Busmanis I, Li H, et al. Predicting clinical behaviour of breast phyllodes tumours: a nomogram based on histological criteria and surgical margins. J Clin Pathol. 2012;65(1):69–76.

    Article  PubMed  Google Scholar 

  360. Nagasawa S, Maeda I, Fukuda T, Wu W, Hayami R, Kojima Y, et al. MED12 exon 2 mutations in phyllodes tumors of the breast. Cancer Med. 2015;4(7):1117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Ng CC, Tan J, Ong CK, Lim WK, Rajasegaran V, Nasir ND, et al. MED12 is frequently mutated in breast phyllodes tumours: a study of 112 cases. J Clin Pathol. 2015;68(9):685–91.

    Article  CAS  PubMed  Google Scholar 

  362. Piscuoglio S, Murray M, Fusco N, Marchio C, Loo FL, Martelotto LG, et al. MED12 somatic mutations in fibroadenomas and phyllodes tumours of the breast. Histopathology. 2015;67(5):719–29.

    Article  PubMed  Google Scholar 

  363. Piscuoglio S, Ng CKY, Murray M, Burke KA, Edelweiss M, Geyer FC, et al. Massively parallel sequencing of Phyllodes tumors of the breast reveals actionable mutations, and TERT promoter hotspot mutations and TERT gene amplification as likely drivers of progression. J Pathol. 2015;in press.

    Google Scholar 

  364. Pfarr N, Kriegsmann M, Sinn P, Klauschen F, Endris V, Herpel E, et al. Distribution of MED12 mutations in fibroadenomas and phyllodes tumors of the breast — implications for tumor biology and pathological diagnosis. Genes Chromosom Cancer. 2015;54(7):444–52.

    Article  CAS  PubMed  Google Scholar 

  365. Tan J, Ong CK, Lim WK, Ng CC, Thike AA, Ng LM, et al. Genomic landscapes of breast fibroepithelial tumors. Nat Genet. 2015;47(11):1341–5.

    Article  CAS  PubMed  Google Scholar 

  366. Yoshida M, Ogawa R, Yoshida H, Maeshima A, Kanai Y, Kinoshita T, et al. TERT promoter mutations are frequent and show association with MED12 mutations in phyllodes tumors of the breast. Br J Cancer. 2015;113(8):1244–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge S. Reis-Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marchiò, C., Geyer, F.C., Reis-Filho, J.S. (2017). Pathology and Molecular Pathology of Breast Cancer. In: Loda, M., Mucci, L., Mittelstadt, M., Van Hemelrijck, M., Cotter, M. (eds) Pathology and Epidemiology of Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-35153-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35153-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35151-3

  • Online ISBN: 978-3-319-35153-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics