Skip to main content

Pathology and Molecular Pathology of Prostate Cancer

  • Chapter
  • First Online:
Book cover Pathology and Epidemiology of Cancer

Abstract

In this chapter, we introduce the reader to the embryological development of the prostate gland, together with its normal anatomy and histology in the adult male. The histopathological features of inflammatory conditions, premalignant disease and glandular and stromal components of invasive disease are subsequently outlined. The remainder of the chapter concentrates on the molecular pathogenesis of prostate cancer (PCa) including the resources and techniques used and the most commonly altered molecular pathways leading to carcinogenesis. Although PCa is the most common malignancy to affect men in the Western world, its highly heterogeneous nature provides a real challenge for clinical disease management. Therefore, an understanding of the genetic and molecular alterations underlying PCa is crucial in guiding future molecular studies and in determining the subtypes that may respond to novel therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar VL, Majumder PK. Prostate gland: structure, functions and regulation. Int Urol Nephrol. 1995;27(3):231–43.

    Article  CAS  PubMed  Google Scholar 

  2. Marker PC, Donjacour AA, Dahiya R, Cunha GR. Hormonal, cellular, and molecular control of prostatic development. Dev biol. 2003;253(2):165–74.

    Article  CAS  PubMed  Google Scholar 

  3. Sadler T. Urogenital system. Langman’s medical embryology. 11th ed. Lippincott Williams & Wilkins; 2010. p. 235–64.

    Google Scholar 

  4. Waltregny D, Leav I, Signoretti S, Soung P, Lin D, Merk F, et al. Androgen-driven prostate epithelial cell proliferation and differentiation in vivo involve the regulation of p27. Mol Endocrinol. 2001;15(5):765–82.

    Article  CAS  PubMed  Google Scholar 

  5. Shima Y, Miyabayashi K, Haraguchi S, Arakawa T, Otake H, Baba T, et al. Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Mol Endocrinol. 2013;27(1):63–73.

    Article  CAS  PubMed  Google Scholar 

  6. Hayward SW, Baskin LS, Haughney PC, Foster BA, Cunha AR, Dahiya R, et al. Stromal development in the ventral prostate, anterior prostate and seminal vesicle of the rat. Acta Anat. 1996;155(2):94–103.

    Article  CAS  PubMed  Google Scholar 

  7. Hricak H. Anatomy of the prostate gland and surgical pathology of prostate cancer. Prostate cancer: contemporary issues in cancer imaging. Cambridge University Press; 2008. p. 1–5.

    Google Scholar 

  8. Moore K. Pelvis and perineum. Clinically oriented anatomy. 5th ed. Lippincott Williams & Wilkins; 2006. p. 402–9.

    Google Scholar 

  9. Villers A, Steg A, Boccon-Gibod L. Anatomy of the prostate: review of the different models. Eur Urol. 1991;20(4):261–8.

    CAS  PubMed  Google Scholar 

  10. Young B. Male reproductive system. Wheater’s functional histology. 4th ed. Churchill Livingstone; 2000. p. 337–9.

    Google Scholar 

  11. McVary KT, McKenna KE, Lee C. Prostate innervation. Prostate Suppl. 1998; 8:2–13.

    Google Scholar 

  12. McCullough AR. Prevention and management of erectile dysfunction following radical prostatectomy. Urol Clin N Am. 2001;28(3):613–27.

    Article  CAS  Google Scholar 

  13. Di Silverio F, Gentile V, De Matteis A, Mariotti G, Giuseppe V, Luigi PA, et al. Distribution of inflammation, pre-malignant lesions, incidental carcinoma in histologically confirmed benign prostatic hyperplasia: a retrospective analysis. Eur Urol. 2003;43(2):164–75.

    Article  PubMed  Google Scholar 

  14. Billis A. Prostatic atrophy. Clinicopathological significance. Int Braz J Urol (Official Journal of the Brazilian Society of Urology). 2010;36(4):401–9.

    Google Scholar 

  15. Untergasser G, Madersbacher S, Berger P. Benign prostatic hyperplasia: age-related tissue-remodeling. Exp Gerontol. 2005;40(3):121–8.

    Article  PubMed  Google Scholar 

  16. Epstein J. Gross anatomy and normal histology. Biopsy interpretation of the prostate. 4th ed. Lippincott Williams & Wilkins; 2008. p. 13–21.

    Google Scholar 

  17. Srigley JR. Benign mimickers of prostatic adenocarcinoma. Mod Pathol (An Official Journal of the United States and Canadian Academy of Pathology, Inc.). 2004;17(3):328–48.

    Google Scholar 

  18. Nelson EC, Cambio AJ, Yang JC, Ok JH, Lara PN Jr, Evans CP. Clinical implications of neuroendocrine differentiation in prostate cancer. Prostate Cancer Prostatic Dis. 2007;10(1):6–14.

    Article  CAS  PubMed  Google Scholar 

  19. Christian JD, Lamm TC, Morrow JF, Bostwick DG. Corpora amylacea in adenocarcinoma of the prostate: incidence and histology within needle core biopsies. Mod Pathol (An Official Journal of the United States and Canadian Academy of Pathology, Inc.). 2005;18(1):36–9.

    Google Scholar 

  20. Magi-Galluzzi C, Evans AJ, Delahunt B, Epstein JI, Griffiths DF, van der Kwast TH, et al. International Society of Urological Pathology (ISUP) consensus conference on handling and staging of radical prostatectomy specimens. Working group 3: extraprostatic extension, lymphovascular invasion and locally advanced disease. Mod Pathol (An Official Journal of the United States and Canadian Academy of Pathology, Inc.). 2011;24(1):26–38.

    Google Scholar 

  21. Kumar V. The lower urinary tract and male genital system. Robbins and cotran pathologic basis of disease. 8th ed. Elsevier Health Sciences; 2009. p. 993–1002.

    Google Scholar 

  22. Pavlica P, Barozzi L, Bartolone A, Gaudiano C, Menchi M, Veneziano S. Nonspecific granulomatous prostatitis. Ultraschall Med. 2005;26(3):203–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mohan H, Bal A, Punia RP, Bawa AS. Granulomatous prostatitis—an infrequent diagnosis. Int J Urol (Official Journal of the Japanese Urological Association). 2005;12(5):474–8.

    Article  Google Scholar 

  24. Preston MA, Wilson KM, Markt SC, Ge R, Morash C, Stampfer MJ, et al. 5alpha-Reductase inhibitors and risk of high-grade or lethal prostate cancer. JAMA Intern Med. 2014;174(8):1301–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol. 1999;155(6):1985–92.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vykhovanets EV, Maclennan GT, Vykhovanets OV, Gupta S. IL-17 Expression by macrophages is associated with proliferative inflammatory atrophy lesions in prostate cancer patients. Int J Clin Exp Pathol. 2011;4(6):552–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shah R, Mucci NR, Amin A, Macoska JA, Rubin MA. Postatrophic hyperplasia of the prostate gland: neoplastic precursor or innocent bystander? Am J Pathol. 2001;158(5):1767–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Macoska JA, Trybus TM, Wojno KJ. 8p22 loss concurrent with 8c gain is associated with poor outcome in prostate cancer. Urology. 2000;55(5):776–82.

    Article  CAS  PubMed  Google Scholar 

  29. Epstein J. Prostatic intraepithelial neoplasia and its mimickers. Biopsy interpretation of the prostate. 4th ed. Lippincott Williams & Wilkins; 2008. p. 35–43.

    Google Scholar 

  30. Alsikafi NF, Brendler CB, Gerber GS, Yang XJ. High-grade prostatic intraepithelial neoplasia with adjacent atypia is associated with a higher incidence of cancer on subsequent needle biopsy than high-grade prostatic intraepithelial neoplasia alone. Urology. 2001;57(2):296–300.

    Article  CAS  PubMed  Google Scholar 

  31. Adamczyk P, Wolski Z, Butkiewicz R, Nussbeutel J, Drewa T. Significance of atypical small acinar proliferation and extensive high-grade prostatic intraepithelial neoplasm in clinical practice. Cent Eur J Urol. 2014;67(2):136–41.

    Google Scholar 

  32. Bostwick DG, Qian J. High-grade prostatic intraepithelial neoplasia. Mod Pathol (An Official Journal of the United States and Canadian Academy of Pathology, Inc.). 2004;17(3):360–79.

    Google Scholar 

  33. Vral A, Magri V, Montanari E, Gazzano G, Gourvas V, Marras E, et al. Topographic and quantitative relationship between prostate inflammation, proliferative inflammatory atrophy and low-grade prostate intraepithelial neoplasia: a biopsy study in chronic prostatitis patients. Int J Oncol. 2012;41(6):1950–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sfanos KS, De Marzo AM. Prostate cancer and inflammation: the evidence. Histopathology. 2012;60(1):199–215.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Epstein J. Diagnosis of limted adenocarcinoma of the prostate. Biopsy interpretation of the prostate. 4th ed. Lippincott, Williams & Wilkins; 2008. p. 81–3.

    Google Scholar 

  36. Martinez-Outschoorn U, Sotgia F, Lisanti MP. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function. Semin Oncol. 2014;41(2):195–216.

    Article  CAS  PubMed  Google Scholar 

  37. Cammarota R, Bertolini V, Pennesi G, Bucci EO, Gottardi O, Garlanda C, et al. The tumor microenvironment of colorectal cancer: stromal TLR-4 expression as a potential prognostic marker. J Transl Med. 2010;8:112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hagglof C, Bergh A. The stroma-a key regulator in prostate function and malignancy. Cancers. 2012;4(2):531–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Barron DA, Rowley DR. The reactive stroma microenvironment and prostate cancer progression. Endocr Relat Cancer. 2012;19(6):R187–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bianchini F, Giannoni E, Serni S, Chiarugi P, Calorini L. 22: 6n-3 DHA inhibits differentiation of prostate fibroblasts into myofibroblasts and tumorigenesis. Br J Nutr. 2012;108(12):2129–37.

    Article  CAS  PubMed  Google Scholar 

  41. Kharaishvili G, Simkova D, Bouchalova K, Gachechiladze M, Narsia N, Bouchal J. The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance. Cancer Cell Int. 2014;14:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Liao CP, Adisetiyo H, Liang M, Roy-Burman P. Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Res. 2010;70(18):7294–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stewart DA, Cooper CR, Sikes RA. Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol (RB&E). 2004;2:2.

    Article  Google Scholar 

  44. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  45. Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G, et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 2014;33(19):2423–31.

    Article  CAS  PubMed  Google Scholar 

  46. Nakai Y, Nonomura N. Inflammation and prostate carcinogenesis. Int J Urol (Official Journal of the Japanese Urological Association). 2013;20(2):150–60.

    Article  CAS  Google Scholar 

  47. Omabe M, Ezeani M. Infection, inflammation and prostate carcinogenesis. Infect Genet Evol (Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases). 2011;11(6):1195–8.

    Article  Google Scholar 

  48. Wang X, Lee SO, Xia S, Jiang Q, Luo J, Li L, et al. Endothelial cells enhance prostate cancer metastasis via IL-6→androgen receptor→TGF-beta→MMP-9 signals. Mol Cancer Ther. 2013;12(6):1026–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou M, Shah R, Shen R, Rubin MA. Basal cell cocktail (34betaE12 + p63) improves the detection of prostate basal cells. Am J Surg Pathol. 2003;27(3):365–71.

    Article  PubMed  Google Scholar 

  50. Sun Y, Niu J, Huang J. Neuroendocrine differentiation in prostate cancer. Am J Transl Res. 2009;1(2):148–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Epstein JI, Amin MB, Beltran H, Lotan TL, Mosquera JM, Reuter VE, et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol. 2014;38(6):756–67.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ananthanarayanan V, Deaton RJ, Yang XJ, Pins MR, Gann PH. Alpha-methylacyl-CoA racemase (AMACR) expression in normal prostatic glands and high-grade prostatic intraepithelial neoplasia (HGPIN): association with diagnosis of prostate cancer. Prostate. 2005;63(4):341–6.

    Article  CAS  PubMed  Google Scholar 

  53. Herawi M, Epstein JI. Immunohistochemical antibody cocktail staining (p63/HMWCK/AMACR) of ductal adenocarcinoma and Gleason pattern 4 cribriform and noncribriform acinar adenocarcinomas of the prostate. Am J Surg Pathol. 2007;31(6):889–94.

    Article  PubMed  Google Scholar 

  54. Wei J, Xu G, Wu M, Zhang Y, Li Q, Liu P, et al. Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation. Anticancer Res. 2008;28(1A):327–34.

    CAS  PubMed  Google Scholar 

  55. Egevad L, Mazzucchelli R, Montironi R. Implications of the International Society of Urological Pathology modified Gleason grading system. Arch Pathol Lab Med. 2012;136(4):426–34.

    Article  PubMed  Google Scholar 

  56. Epstein J. Grading of prostatic adenocarcinomas. Biopsy interpretation of the prostate. 4th ed. Lippincott, Williams & Wilkins; 2008. p. 175–87.

    Google Scholar 

  57. Pierorazio PM, Walsh PC, Partin AW, Epstein JI. Prognostic Gleason grade grouping: data based on the modified Gleason scoring system. BJU Int. 2013;111(5):753–60.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Epstein JI. An update of the Gleason grading system. J Urol. 2010;183(2):433–40.

    Article  PubMed  Google Scholar 

  59. Lotan TL, Epstein JI. Clinical implications of changing definitions within the Gleason grading system. Nat Rev Urol. 2010;7(3):136–42.

    Article  PubMed  Google Scholar 

  60. Epstein JI, Allsbrook WC, Jr., Amin MB, Egevad LL, Committee IG. The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2005;29(9):1228–42.

    Google Scholar 

  61. Billis A, Guimaraes MS, Freitas LL, Meirelles L, Magna LA, Ferreira U. The impact of the 2005 International Society of Urological Pathology consensus conference on standard Gleason grading of prostatic carcinoma in needle biopsies. J Urol. 2008;180(2):548–52, discussion 52–3.

    Google Scholar 

  62. Tsivian M, Sun L, Mouraviev V, Madden JF, Mayes JM, Moul JW, et al. Changes in Gleason score grading and their effect in predicting outcome after radical prostatectomy. Urology. 2009;74(5):1090–3.

    Article  PubMed  Google Scholar 

  63. Epstein JI, Evegad, L, Amin MB, Delahunt, B, Srigley JR, Humphrey PA. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Definition of grading patterns and proposal for a new grading system. Am J Surg Pathol. 2015 [epub ahead of print].

    Google Scholar 

  64. Helpap B, Egevad L. Correlation of modified Gleason grading with pT stage of prostatic carcinoma after radical prostatectomy. Anal Quant Cytol Histol (The International Academy of Cytology [and] American Society of Cytology). 2008;30(1):1–7.

    Google Scholar 

  65. Corcoran NM, Hong MK, Casey RG, Hurtado-Coll A, Peters J, Harewood L, et al. Upgrade in Gleason score between prostate biopsies and pathology following radical prostatectomy significantly impacts upon the risk of biochemical recurrence. BJU Int. 2011;108(8):E202–10.

    Article  PubMed  Google Scholar 

  66. Suer E, Gokce MI, Gulpinar O, Guclu AG, Haciyev P, Gogus C, et al. How significant is upgrade in Gleason score between prostate biopsy and radical prostatectomy pathology while discussing less invasive treatment options? Scand J Urol. 2014;48(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  67. D’Elia C, Cerruto MA, Cioffi A, Novella G, Cavalleri S, Artibani W. Upgrading and upstaging in prostate cancer: from prostate biopsy to radical prostatectomy. Mol Clin Oncol. 2014;2(6):1145–9.

    PubMed  PubMed Central  Google Scholar 

  68. Edge S. Genitourinary sites. AJCC Cancer staging manual. 7th ed. Springer; 2010. p. 457–68.

    Google Scholar 

  69. Epstein JI, et al. Tumours of the prostate. In: Eble JN, Sauter G, Epstein JI, Sesterhenn IA, editors. IARC WHO classification of tumours tumours of the urinary system and male genital organs. 2004. p. 159–216.

    Google Scholar 

  70. Sobel RE, Sadar MD. Cell lines used in prostate cancer research: a compendium of old and new lines—part 2. J Urol. 2005;173(2):360–72.

    Article  CAS  PubMed  Google Scholar 

  71. Johnson IR, Parkinson-Lawrence EJ, Butler LM, Brooks DA. Prostate cell lines as models for biomarker discovery: performance of current markers and the search for new biomarkers. Prostate. 2014;74(5):547–60.

    Article  CAS  PubMed  Google Scholar 

  72. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159(1):176–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 2014;159(1):163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Valkenburg KC, Williams BO. Mouse models of prostate cancer. Prostate Cancer. 2011;2011:895238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Parisotto M, Metzger D. Genetically engineered mouse models of prostate cancer. Mol Oncol. 2013;7(2):190–205.

    Article  CAS  PubMed  Google Scholar 

  76. Ittmann M, Huang J, Radaelli E, Martin P, Signoretti S, Sullivan R, et al. Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res. 2013;73(9):2718–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Irshad S, Abate-Shen C. Modeling prostate cancer in mice: something old, something new, something premalignant, something metastatic. Cancer Metastasis Rev. 2013;32(1–2):109–22.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cho H, Herzka T, Zheng W, Qi J, Wilkinson JE, Bradner JE, et al. RapidCaP, a novel GEM model for metastatic prostate cancer analysis and therapy, reveals myc as a driver of Pten-mutant metastasis. Cancer Discov. 2014;4(3):318–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Song Y, Gilbert D, O’Sullivan TN, Yang C, Pan W, Fathalizadeh A, et al. Carcinoma initiation via RB tumor suppressor inactivation: a versatile approach to epithelial subtype-dependent cancer initiation in diverse tissues. PLoS ONE. 2013;8(12):e80459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bjerke GA, Pietrzak K, Melhuish TA, Frierson HF Jr, Paschal BM, Wotton D. Prostate cancer induced by loss of Apc is restrained by TGFbeta signaling. PLoS ONE. 2014;9(3):e92800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lawrence MG, Taylor RA, Toivanen R, Pedersen J, Norden S, Pook DW, et al. A preclinical xenograft model of prostate cancer using human tumors. Nat Protoc. 2013;8(5):836–48.

    Article  CAS  PubMed  Google Scholar 

  82. Priolo C, Agostini M, Vena N, Ligon AH, Fiorentino M, Shin E, et al. Establishment and genomic characterization of mouse xenografts of human primary prostate tumors. Am J Pathol. 2010;176(4):1901–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rubin MA, Dunn R, Strawderman M, Pienta KJ. Tissue microarray sampling strategy for prostate cancer biomarker analysis. Am J Surg Pathol. 2002;26(3):312–9.

    Article  PubMed  Google Scholar 

  84. Jawhar NM. Tissue microarray: a rapidly evolving diagnostic and research tool. Ann Saudi Med. 2009;29(2):123–7.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Esmaeilsabzali H, Beischlag TV, Cox ME, Parameswaran AM, Park EJ. Detection and isolation of circulating tumor cells: principles and methods. Biotechnol Adv. 2013;31(7):1063–84.

    Article  CAS  PubMed  Google Scholar 

  86. Pantel K, Alix-Panabieres C. Detection methods of circulating tumor cells. J Thorac Dis. 2012;4(5):446–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sollier E, Go DE, Che J, Gossett DR, O’Byrne S, Weaver WM, et al. Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip. 2014;14(1):63–77.

    Article  CAS  PubMed  Google Scholar 

  88. Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014;32(5):479–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Amato RJ, Melnikova V, Zhang Y, Liu W, Saxena S, Shah PK, et al. Epithelial cell adhesion molecule-positive circulating tumor cells as predictive biomarker in patients with prostate cancer. Urology. 2013;81(6):1303–7.

    Article  PubMed  Google Scholar 

  90. Papadopoulou E, Davilas E, Sotiriou V, Koliopanos A, Aggelakis F, Dardoufas K, et al. Cell-free DNA and RNA in plasma as a new molecular marker for prostate cancer. Oncol Res. 2004;14(9):439–45.

    CAS  PubMed  Google Scholar 

  91. Boddy JL, Gal S, Malone PR, Harris AL, Wainscoat JS. Prospective study of quantitation of plasma DNA levels in the diagnosis of malignant versus benign prostate disease. Clin Cancer Res (An Official Journal of the American Association for Cancer Research). 2005;11(4):1394–9.

    Article  CAS  Google Scholar 

  92. Chun FK, Muller I, Lange I, Friedrich MG, Erbersdobler A, Karakiewicz PI, et al. Circulating tumour-associated plasma DNA represents an independent and informative predictor of prostate cancer. BJU Int. 2006;98(3):544–8.

    Article  CAS  PubMed  Google Scholar 

  93. Altimari A, Grigioni AD, Benedettini E, Gabusi E, Schiavina R, Martinelli A, et al. Diagnostic role of circulating free plasma DNA detection in patients with localized prostate cancer. Am J Clin Pathol. 2008;129(5):756–62.

    Article  CAS  PubMed  Google Scholar 

  94. Schwarzenbach H, Alix-Panabieres C, Muller I, Letang N, Vendrell JP, Rebillard X, et al. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res (An Official Journal of the American Association for Cancer Research). 2009;15(3):1032–8.

    Article  CAS  Google Scholar 

  95. Joseph A, Gnanapragasam VJ. Laser-capture microdissection and transcriptional profiling in archival FFPE tissue in prostate cancer. Methods Mol Biol. 2011;755:291–300.

    Article  CAS  PubMed  Google Scholar 

  96. Chaux A, Albadine R, Toubaji A, Hicks J, Meeker A, Platz EA, et al. Immunohistochemistry for ERG expression as a surrogate for TMPRSS2-ERG fusion detection in prostatic adenocarcinomas. Am J Surg Pathol. 2011;35(7):1014–20.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ornstein DK, Cinquanta M, Weiler S, Duray PH, Emmert-Buck MR, Vocke CD, et al. Expression studies and mutational analysis of the androgen regulated homeobox gene NKX3.1 in benign and malignant prostate epithelium. J Urol. 2001;165(4):1329–34.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang Y, Perez T, Blondin B, Du J, Liu P, Escarzaga D, et al. Identification of FISH biomarkers to detect chromosome abnormalities associated with prostate adenocarcinoma in tumour and field effect environment. BMC Cancer. 2014;14:129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Byers RJ, Di Vizio D, O’Connell F, Tholouli E, Levenson RM, Gossage K, et al. Semiautomated multiplexed quantum dot-based in situ hybridization and spectral deconvolution. J Mol Diagn (JMD). 2007;9(1):20–9.

    Article  CAS  Google Scholar 

  100. Goering W, Kloth M, Schulz WA. DNA methylation changes in prostate cancer. Methods Mol Biol. 2012;863:47–66.

    Article  CAS  PubMed  Google Scholar 

  101. Strand SH, Orntoft TF, Sorensen KD. Prognostic DNA methylation markers for prostate cancer. Int J Mol Sci. 2014;15(9):16544–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Loeb S, Peskoe SB, Joshu CE, Huang WY, Hayes RB, Carter HB, et al. Do environmental factors modify the genetic risk of prostate cancer? Cancer epidemiology, biomarkers & prevention. A publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2014.

    Google Scholar 

  103. Bova GS, Partin AW, Isaacs SD, Carter BS, Beaty TL, Isaacs WB, et al. Biological aggressiveness of hereditary prostate cancer: long-term evaluation following radical prostatectomy. J Urol. 1998;160(3):660–3.

    Article  CAS  PubMed  Google Scholar 

  104. Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med. 2012;366(2):141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jiang J, Jia P, Shen B, Zhao Z. Top associated SNPs in prostate cancer are significantly enriched in cis-expression quantitative trait loci and at transcription factor binding sites. Oncotarget. 2014;5(15):6168–77.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Van den Broeck T, Joniau S, Clinckemalie L, Helsen C, Prekovic S, Spans L, et al. The role of single nucleotide polymorphisms in predicting prostate cancer risk and therapeutic decision making. BioMed Res Int. 2014;2014:627510.

    PubMed  PubMed Central  Google Scholar 

  107. Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. Philos Trans R Soc Lond B Biol Sci. 2013;368(1620):20120362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hieronymus H, Schultz N, Gopalan A, Carver BS, Chang MT, Xiao Y, et al. Copy number alteration burden predicts prostate cancer relapse. Proc Natl Acad Sci USA. 2014;111(30):11139–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang J, et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature. 2011;470(7333):269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Penney KL, Sinnott JA, Fall K, Pawitan Y, Hoshida Y, Kraft P, et al. mRNA expression signature of Gleason grade predicts lethal prostate cancer. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2011;29(17):2391–6.

    Article  CAS  Google Scholar 

  113. Priolo C, Pyne S, Rose J, Regan ER, Zadra G, Photopoulos C, et al. AKT1 and MYC induce distinctive metabolic fingerprints in human prostate cancer. Cancer Res. 2014.

    Google Scholar 

  114. Magi-Galluzzi C, Xu X, Hlatky L, Hahnfeldt P, Kaplan I, Hsiao P, et al. Heterogeneity of androgen receptor content in advanced prostate cancer. Mod Pathol (An Official Journal of the United States and Canadian Academy of Pathology, Inc.). 1997;10(8):839–45.

    Google Scholar 

  115. Hodgson MC, Bowden WA, Agoulnik IU. Androgen receptor footprint on the way to prostate cancer progression. World J Urol. 2012;30(3):279–85.

    Article  CAS  PubMed  Google Scholar 

  116. Kumar V. Neoplasia. Robbins and Cotran pathologic basis of disease. Elsevier Health Sciences; 2009. p. 294.

    Google Scholar 

  117. Martin NE, et al. Measuring PI3K activation in prostate cancer using immunohistochemistry and RNA expression. Mol Can Res. 2014;(in revision).

    Google Scholar 

  118. Lee SH, Poulogiannis G, Pyne S, Jia S, Zou L, Signoretti S, et al. A constitutively activated form of the p110beta isoform of PI3-kinase induces prostatic intraepithelial neoplasia in mice. Proc Natl Acad Sci USA. 2010;107(24):11002–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Majumder PK, Grisanzio C, O’Connell F, Barry M, Brito JM, Xu Q, et al. A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell. 2008;14(2):146–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen ML, Xu PZ, Peng XD, Chen WS, Guzman G, Yang X, et al. The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/− mice. Genes Dev. 2006;20(12):1569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fiorentino M, Capizzi E, Loda M. Blood and tissue biomarkers in prostate cancer: state of the art. Urol Clin N Am. 2010;37(1):131–41 (Table of Contents).

    Google Scholar 

  122. Lotan TL, Carvalho FL, Peskoe SB, Hicks JL, Good J, Fedor HL, et al. PTEN loss is associated with upgrading of prostate cancer from biopsy to radical prostatectomy. Mod Pathol (An Official Journal of the United States and Canadian Academy of Pathology, Inc.). 2014.

    Google Scholar 

  123. Benedettini E, Nguyen P, Loda M. The pathogenesis of prostate cancer: from molecular to metabolic alterations. Diagn Histopathol. 2008;14(5):195–201.

    Article  Google Scholar 

  124. St John J, Powell K, Conley-Lacomb MK, Chinni SR. TMPRSS2-ERG fusion gene expression in prostate tumor cells and its clinical and biological significance in prostate cancer progression. J Cancer Sci Ther. 2012;4(4):94–101.

    Google Scholar 

  125. Clark JP, Cooper CS. ETS gene fusions in prostate cancer. Nat Rev Urol. 2009;6(8):429–39.

    Article  CAS  PubMed  Google Scholar 

  126. Narod SA, Seth A, Nam R. Fusion in the ETS gene family and prostate cancer. Br J Cancer. 2008;99(6):847–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Baena E, Shao Z, Linn DE, Glass K, Hamblen MJ, Fujiwara Y, et al. ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev. 2013;27(6):683–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Clegg NJ, Couto SS, Wongvipat J, Hieronymus H, Carver BS, Taylor BS, et al. MYC cooperates with AKT in prostate tumorigenesis and alters sensitivity to mTOR inhibitors. PLoS ONE. 2011;6(3):e17449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dong L, Zhang X, Yu C, Yu T, Liu S, Hou L, et al. Monitoring luciferase-labeled human prostate stem cell antigen-expressing tumor growth in a mouse model. Exp Ther Med. 2013;6(5):1208–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Benassi B, Marani M, Loda M, Blandino G. USP2a alters chemotherapeutic response by modulating redox. Cell Death Dis. 2013;4:e812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Benassi B, Flavin R, Marchionni L, Zanata S, Pan Y, Chowdhury D, et al. MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discov. 2012;2(3):236–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C, et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol (an official journal of the United States and Canadian Academy of Pathology, Inc.). 2008;21(9):1156–67.

    Google Scholar 

  133. Allott EH, Masko EM, Freedland SJ. Obesity and prostate cancer: weighing the evidence. Eur Urol. 2013;63(5):800–9.

    Article  CAS  PubMed  Google Scholar 

  134. Flavin R, Zadra G, Loda M. Metabolic alterations and targeted therapies in prostate cancer. J Pathol. 2011;223(2):283–94.

    Article  CAS  PubMed  Google Scholar 

  135. Zadra G, Photopoulos C, Loda M. The fat side of prostate cancer. Biochim Biophys Acta. 2013;1831(10):1518–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Migita T, Ruiz S, Fornari A, Fiorentino M, Priolo C, Zadra G, et al. Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J Natl Cancer Inst. 2009;101(7):519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hamada S, Horiguchi A, Kuroda K, Ito K, Asano T, Miyai K, et al. Increased fatty acid synthase expression in prostate biopsy cores predicts higher Gleason score in radical prostatectomy specimen. BMC Clin Pathol. 2014;14(1):3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Loda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tchrakian, N., Cotter, M.B., Loda, M. (2017). Pathology and Molecular Pathology of Prostate Cancer. In: Loda, M., Mucci, L., Mittelstadt, M., Van Hemelrijck, M., Cotter, M. (eds) Pathology and Epidemiology of Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-35153-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35153-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35151-3

  • Online ISBN: 978-3-319-35153-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics