Skip to main content

Ambulance Location Problem with Stochastic Call Arrivals Under Nearest Available Dispatching Policy

  • Conference paper
  • First Online:
Health Care Systems Engineering for Scientists and Practitioners

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 169))

  • 932 Accesses

Abstract

We study a problem of locating ambulances so that their coverage for timely response is maximized. While ambulance location problems have been extensively studied, the model proposed in this paper presents two novel features. First, our model explicitly takes a dispatching policy into account, which is motivated by the fact that a dispatching policy is a key component for ambulance operations. Second, instead of a probabilistic model commonly found in the literature, we take a stochastic programming approach to incorporate temporal variations in call arrivals. The advantage of our algorithm is demonstrated by comparing performances of our algorithm with other location models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboueljinane, L., Sahin E., Jemai Z.: A review on simulation models applied to emergency medical service operations. Comput. Ind. Eng. 66, 734–750 (2013)

    Article  Google Scholar 

  • Ahmed, S.: A scenario decomposition algorithm for 0–1 stochastic programs. Oper. Res. Lett. 41, 565–569 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Brotcorne, L., Laporte G., Semet, F.: Ambulance location and relocation models. Eur. J. Oper. Res. 147, 451–463 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24, 37–45 (1999)

    Google Scholar 

  • Church, R., ReVelle, C.: The maximal covering location problem. Pap. Reg. Sci. 32, 101–118 (1974)

    Article  Google Scholar 

  • Farahani, R.Z., Asgari, N., Heidari, N., Hosseininia, M., Goh, M.: Covering problems in facility location: a review. Comput. Ind. Eng. 62, 368–407 (2012)

    Article  Google Scholar 

  • Fisher, M.L.: The lagrangian relaxation method for solving integer programming problems. Manag. Sci. 50, 1861–1871 (2004)

    Article  Google Scholar 

  • Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Hogan, K., ReVelle, C.: Concepts and applications of backup coverage. Manag. Sci. 32, 1434–1444 (1986)

    Article  Google Scholar 

  • Li, X., Zhao, Z., Zhu, X., Wyatt, T.: Covering models and optimization techniques for emergency response facility location and planning: a review. Math. Methods Oper. Res. 74, 281–310 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Matteson, D.S., McLean, M.W., Woodard, D.B., Henderson, S.G.: Forecasting emergency medical service call arrival rates. Ann. Appl. Stat. 5, 1379–1406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, S.H., Daskin, M.S.: Strategic facility location: a review. Eur. J. Oper. Res. 111, 423–447 (1998)

    Article  MATH  Google Scholar 

  • ReVelle, C.S., Eiselt, H.A: Location analysis: a synthesis and survey. Eur. J. Oper. Res. 165, 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • ReVelle, C., Hogan, K.: The maximum availability location problem. Transp. Sci. 23, 192–200 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Toregas, C., Swain, R., ReVelle, C., Bergman, L.: The location of emergency service facilities. Oper. Res. 19, 1363–1373 (1971)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant “research and development of modeling and simulating the rescues, the transfer, and the treatment of disaster victims” (nema-md-2013-36) from the man-made disaster prevention research center, Ministry of Public Safety and Security.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taesik Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sung, I., Lee, T. (2016). Ambulance Location Problem with Stochastic Call Arrivals Under Nearest Available Dispatching Policy. In: Matta, A., Sahin, E., Li, J., Guinet, A., Vandaele, N. (eds) Health Care Systems Engineering for Scientists and Practitioners. Springer Proceedings in Mathematics & Statistics, vol 169. Springer, Cham. https://doi.org/10.1007/978-3-319-35132-2_10

Download citation

Publish with us

Policies and ethics