Skip to main content

Ion Migration in Hybrid Perovskite Solar Cells

  • Chapter
  • First Online:
Organic-Inorganic Halide Perovskite Photovoltaics

Abstract

Organometal trihalide perovskite (OTP) solar cells might be the next commercially available thin film solar cells due to its high power conversion efficiency and low fabrication cost, which should be attributed to the fantastic optoelectronic properties of OTP materials. Recent studies disclosed that OTP is actually a kind of soft material with both charge carrier conduction and ionic conduction. Increasing observations indicate that mobile ions impact a lot on the electronic/optoelectric properties of OTP film, which hence have raised substantial related studies already. In this chapter, we will provide critical review about the current understanding of ion migration behaviours in OTP solar cells and discuss its impacts on the photovoltaic device efficiency and stability. Besides, the emerging efforts about suppressing ion migration in perovskite films will be summarized. The purpose of this chapter is to provide a quick and brief introduction of the research progress in the ion migration studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mizusaki, J., Arai, K., Fueki, K.: Ionic conduction of the perovskite-type halides. Solid State Ion. 11, 203–211 (1983)

    Article  Google Scholar 

  2. Unger, E., Hoke, E., Bailie, C., Nguyen, W., Bowring, A., Heumüller, T., Christoforo, M., McGehee, M.: Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014)

    Article  Google Scholar 

  3. Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T.-W., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)

    Article  Google Scholar 

  4. Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., Huang, J.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015)

    Article  Google Scholar 

  5. Bag, M., Renna, L.A., Adhikari, R.Y., Karak, S., Liu, F., Lahti, P.M., Russell, T.P., Tuominen, M.T., Venkataraman, D.: Kinetics of in ion transport perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc. 137, 13130–13137 (2015)

    Article  Google Scholar 

  6. Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S., Nazeeruddin, M.K., Grätzel, M.: Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH 3 NH 3 PbI 3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015)

    Article  Google Scholar 

  7. Yuan, Y.; Huang, J.: Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 2016. doi:10.1021/acs.accounts.5b00420

    Google Scholar 

  8. Chin, X.Y., Cortecchia, D., Yin, J., Bruno, A., Soci, C.: Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 6, 7383 (2015)

    Article  Google Scholar 

  9. Juarez-Perez, E.J., Sanchez, R.S., Badia, L., Garcia-Belmonte, G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014)

    Article  Google Scholar 

  10. Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., Meredith, P.: Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2014)

    Article  Google Scholar 

  11. Hoke, E.T., Slotcavage, D.J., Dohner, E.R., Bowring, A.R., Karunadasa, H.I., McGehee, M.D.: Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015)

    Article  Google Scholar 

  12. Deng, Y., Xiao, Z., Huang, J.: Light induced self-poling effect in organometal trihalide perovskite solar cells for increased device efficiency and stability. Adv. Energy Mater. 5, 1500721 (2015)

    Article  Google Scholar 

  13. Yuan, Y., Chae, J., Shao, Y., Wang, Q., Xiao, Z., Centrone, A., Huang, J.: Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, 1500615 (2015)

    Article  Google Scholar 

  14. Hull, S.: Superionics: crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233 (2004)

    Article  Google Scholar 

  15. Ilschner, B.: Determination of the electronic conductivity in silver halides by means of polarization measurements. J. Chem. Phys. 28, 1109–1112 (1958)

    Article  Google Scholar 

  16. Yashima, M.: Diffusion pathway of mobile ions and crystal structure of ionic and mixed conductors-a brief review. J. Ceram. Soc. Jpn. 117, 1055–1059 (2009)

    Article  Google Scholar 

  17. Cherry, M., Islam, M.S., Catlow, C.: Oxygen ion migration in perovskite-type oxides. J. Solid State Chem. 118, 125–132 (1995)

    Article  Google Scholar 

  18. Yashima, M., Nomura, K., Kageyama, H., Miyazaki, Y., Chitose, N., Adachi, K.: Conduction path and disorder in the fast oxide-ion conductor (La 0.8 Sr 0.2)(Ga 0.8 Mg 0.15 Co 0.05) O 2.8. Chem. Phys. Lett. 380, 391–396 (2003)

    Article  Google Scholar 

  19. Yashima, M.; Tsuji, T.: Structural investigation of the cubic perovskite-type doped lanthanum cobaltite La0. 6Sr0. 4CoO3 − δ at 1531 K: possible diffusion path of oxygen ions in an electrode material. J. Appl. Crystal. 40, 1166–1168 (2007)

    Google Scholar 

  20. Yashima, M., Kobayashi, S., Yasui, T.: Positional disorder and diffusion path of oxide ions in the yttria-doped ceria Ce 0.93 Y 0.07 O 1.96. Faraday Discuss. 134, 369–376 (2007)

    Article  Google Scholar 

  21. Yashima, M., Tsuji, T.: Crystal Structure, Disorder, and Diffusion Path of Oxygen Ion CONDUCTORS Y1-x Ta x O1. 5 + x (x = 0.215 and 0.30). Chem. Mater. 19, 3539–3544 (2007)

    Article  Google Scholar 

  22. Eames, C., Frost, J.M., Barnes, P.R., O’regan, B.C., Walsh, A., Islam, M.S.: Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 2015, 6, 7497

    Google Scholar 

  23. Almora, O., Zarazua, I., Mas-Marza, E., Mora-Sero, I., Bisquert, J., Garcia-Belmonte, G.: Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells. J. Phys. Chem. Lett. 6, 1645–1652 (2015)

    Article  Google Scholar 

  24. Shi, J., Xu, X., Zhang, H., Luo, Y., Li, D., Meng, Q.: Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport. Appl. Phys. Lett. 107, 163901 (2015)

    Article  Google Scholar 

  25. Azpiroz, J.M., Mosconi, E., Bisquert, J., De Angelis, F.: Defects migration in methylammonium lead iodide and their role in perovskite solar cells operation. Energy Environ. Sci. 8, 2118–2127 (2015)

    Article  Google Scholar 

  26. Haruyama, J., Sodeyama, K., Han, L., Tateyama, Y.: First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015)

    Article  Google Scholar 

  27. Egger, D.A., Kronik, L., Rappe, A.M.: Theory of hydrogen migration in organic–inorganic halide perovskites. Angew. Chem. Int. Ed. 54, 12437–12441 (2015)

    Article  Google Scholar 

  28. Guillemoles, J.-F., Rau, U., Kronik, L., Schock, H.-W., Cahen, D.: Cu (In, Ga) Se2 solar cells: device stability based on chemical flexibility. Adv. Mater. 11, 957–961 (1999)

    Article  Google Scholar 

  29. Bourgoin, J., Corbett, J.: A new mechanism for interstistitial migration. Phys. Lett. A 38, 135–137 (1972)

    Article  Google Scholar 

  30. Yin, W.-J., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014)

    Article  Google Scholar 

  31. Leijtens, T., Hoke, E.T. Grancini, G.. Slotcavage, D.J., Eperon, G.E.; Ball, J.M., De Bastiani, M., Bowring, A.R.; Martino, N., Wojciechowski, K.: Mapping electric field‐induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5 (2015)

    Google Scholar 

  32. Yang, T.Y., Gregori, G., Pellet, N., Grätzel, M., Maier, J.: The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54, 7905–7910 (2015)

    Article  Google Scholar 

  33. Yuan, Y., Wang, Q., Shao, Y., Lu, H., Li, T., Gruverman, A., Huang, J.: Electric field driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperature. Adv. Energy Mater. 6, 1501803 (2015)

    Article  Google Scholar 

  34. De Bastiani, M., Dell’Erba, G., Gandini, M., D’Innocenzo, V., Neutzner, S., Kandada, A.R.S., Grancini, G., Binda, M., Prato, M., Ball, J.M.: Ion migration and the role of preconditioning cycles in the stabilization of the j-v characteristics of inverted hybrid perovskite solar cells. Adv. Energy Mater. 6, 1501453 (2016)

    Article  Google Scholar 

  35. Zhang, H., Lin, H., Liang, C., Liu, H., Liang, J., Zhao, Y., Zhang, W., Sun, M., Xiao, W., Li, H.: Organic-Inorganic perovskite light-emitting electrochemical cells with a large capacitance. Adv. Funct. Mater. 25, 7226–7232 (2015)

    Article  Google Scholar 

  36. Li, C., Tscheuschner, S., Paulus, F., Hopkinson, P.E., Kießling, J., Köhler, A., Vaynzof, Y., Huettner, S.: Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. (2016). doi:10.1002/adma.201503832

    Google Scholar 

  37. Chen, Q., De Marco, N., Yang, Y.M., Song, T.-B., Chen, C.-C., Zhao, H., Hong, Z., Zhou, H., Yang, Y.: Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015)

    Article  Google Scholar 

  38. Wang, Q., Shao, Y., Dong, Q., Xiao, Z., Yuan, Y., Huang, J.: Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 7, 2359–2365 (2014)

    Article  Google Scholar 

  39. Wang, Q., Shao, Y., Xie, H., Lyu, L., Liu, X., Gao, Y., Huang, J.: Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105, 163508 (2014)

    Article  Google Scholar 

  40. Yu, H., Lu, H., Xie, F., Zhou, S., Zhao, N.: Native Defect-Induced Hysteresis Behavior in Organolead Iodide Perovskite Solar Cells. Adv. Funct. Mater. (2016). doi:10.1002/adfm.201504997

    Google Scholar 

  41. Kim, J., Lee, S.-H., Lee, J.H., Hong, K.-H.: The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014)

    Article  Google Scholar 

  42. Buin, A., Pietsch, P., Xu, J., Voznyy, O., Ip, A.H., Comin, R., Sargent, E.H.: Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014)

    Article  Google Scholar 

  43. Walsh, A., Scanlon, D.O., Chen, S., Gong, X., Wei, S.H.: Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 127, 1811–1814 (2015)

    Article  Google Scholar 

  44. Dong, R., Fang, Y., Chae, J., Dai, J., Xiao, Z., Dong, Q., Yuan, Y., Centrone, A., Zeng, X.C., Huang, J.: High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 27, 1912–1918 (2015)

    Article  Google Scholar 

  45. Chen, Q., Zhou, H., Song, T.-B., Luo, S., Hong, Z., Duan, H.-S., Dou, L., Liu, Y., Yang, Y.: Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014)

    Article  Google Scholar 

  46. Choi, J.J., Yang, X., Norman, Z.M., Billinge, S.J., Owen, J.S.: Structure of methylammonium lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells. Nano Lett. 14, 127–133 (2013)

    Article  Google Scholar 

  47. Wu, B., Fu, K., Yantara, N., Xing, G., Sun, S., Sum, T.C., Mathews, N.: Charge accumulation and hysteresis in perovskite-based solar cells: an electro-optical analysis. Adv. Energy Mater. 5, 1500829 (2015)

    Article  Google Scholar 

  48. Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014)

    Article  Google Scholar 

  49. Lian, J., Wang, Q., Yuan, Y., Shao, Y., Huang, J.: Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells. J. Mater. Chem. A 3, 9146–9151 (2015)

    Article  Google Scholar 

  50. You, J., Yang, Y.M., Hong, Z., Song, T.-B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W.-H., Li, G.: Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014)

    Article  Google Scholar 

  51. Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., Huang, J.: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014)

    Article  Google Scholar 

  52. Zhou, Z., Wang, Z., Zhou, Y., Pang, S., Wang, D., Xu, H., Liu, Z., Padture, N.P., Cui, G.: Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem. Int. Ed. 54, 9705–9709 (2015)

    Article  Google Scholar 

  53. Leijtens, T., Hoke, E.T., Grancini, G., Slotcavage, D.J., Eperon, G.E., Ball, J.M., De Bastiani, M., Bowring, A.R., Martino, N., Wojciechowski, K.: Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015)

    Article  Google Scholar 

  54. Dong, Q., Song, J., Fang, Y., Shao, Y., Ducharme, S., Huang, J.: Lateral-structure single-crystal hybrid perovskite solar cells through piezoelectric poling (2015). doi:10.1002/adma.201505244

    Google Scholar 

  55. Gottesman, R., Haltzi, E., Gouda, L., Tirosh, S., Bouhadana, Y., Zaban, A., Mosconi, E., De Angelis, F.: Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662–2669 (2014)

    Article  Google Scholar 

  56. Feng, C., Yin, W.-J., Nie, J., Zu, X., Huda, M.N., Wei, S.-H., Al-Jassim, M.M., Yan, Y.: Possible effects of oxygen in Te-rich Σ3 (112) grain boundaries in CdTe. Solid State Commun. 152, 1744–1747 (2012)

    Article  Google Scholar 

  57. Yin, W.-J., Wu, Y., Noufi, R., Al-Jassim, M., Yan, Y.: Defect segregation at grain boundary and its impact on photovoltaic performance of CuInSe2. Appl. Phys. Lett. 102, 193905 (2013)

    Article  Google Scholar 

  58. Yin, W.J., Wu, Y., Wei, S.H., Noufi, R., Al-Jassim, M.M., Yan, Y.: Engineering grain boundaries in cu2znsnse4 for better cell performance: a first-principle study. Adv. Energy Mater. 4, 1300712 (2014)

    Article  Google Scholar 

  59. Yin, W.-J., Yang, J.-H., Kang, J., Yan, Y., Wei, S.-H.: Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015)

    Article  Google Scholar 

  60. Zhao, Y., Liang, C., Zhang, H., Li, D., Tian, D., Li, G., Jing, X., Zhang, W., Xiao, W., Liu, Q.: Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskites. Energy Environ. Sci. 8, 1256–1260 (2015)

    Article  Google Scholar 

  61. Zhang, Y., Liu, M., Eperon, G.E., Leijtens, T.C., McMeekin, D., Saliba, M., Zhang, W., De Bastiani, M., Petrozza, A., Herz, L.M.: Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Mater. Horiz. 2, 315–322 (2015)

    Article  Google Scholar 

  62. Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J.: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014)

    Article  Google Scholar 

  63. Kim, H.-S., Park, N.-G.: Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 5, 2927–2934 (2014)

    Article  Google Scholar 

  64. Hu, M., Bi, C., Yuan, Y., Bai, Y., Huang, J.: Stabilized wide bandgap mapbbrxi3-x perovskite by enhanced grain size and improved crystallinity. Adv. Sci. (2015). doi:10.1002/advs.201500301

    Google Scholar 

  65. Yang, B., Dyck, O., Poplawsky, J., Keum, J., Puretzky, A., Das, S., Ivanov, I., Rouleau, C., Duscher, G., Geohegan, D.: Perovskite solar cells with near 100 % internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions. J. Am. Chem. Soc. 137, 9210–9213 (2015)

    Article  Google Scholar 

  66. van Reenen, S., Kemerink, M., Snaith, H.J.: Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 3808–3814 (2015)

    Article  Google Scholar 

  67. Chen, B., Yang, M., Zheng, X., Wu, C., Li, W., Yan, Y., Bisquert, J., Garcia-Belmonte, G., Zhu, K., Priya, S.: Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 6, 4693–4700 (2015)

    Article  Google Scholar 

  68. Almora, O., Guerrero, A., Garcia-Belmonte, G.: Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites. Appl. Phys. Lett. 108, 043903 (2016)

    Article  Google Scholar 

  69. Coll, M., Gomez, A., Mas-Marza, E., Almora, O., Garcia-Belmonte, G., Campoy-Quiles, M., Bisquert, J.: Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J. Phys. Chem. Lett. 6, 1408–1413 (2015)

    Article  Google Scholar 

  70. Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y.: A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014)

    Article  Google Scholar 

  71. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  72. Wu, S., Xu, L., Xing, X., Chen, S., Yuan, Y., Liu, Y., Yu, Y., Li, X., Li, S.: Reverse-bias-induced bipolar resistance switching in Pt/TiO2/SrTi0. 99Nb0. 01O3/Pt devices. Appl. Phys. Lett. 93, 43502 (2008)

    Article  Google Scholar 

  73. Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    Article  Google Scholar 

  74. Bi, C., Wang, Q., Shao, Y., Yuan, Y., Xiao, Z., Huang, J.: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015)

    Article  Google Scholar 

  75. Kharton, V., Viskup, A., Yaremchenko, A., Baker, R., Gharbage, B., Mather, G., Figueiredo, F., Naumovich, E., Marques, F.: Ionic conductivity of La (Sr) Ga (Mg, M) O 3 − δ (M = Ti, Cr, Fe Co, Ni): effects of transition metal dopants. Solid State Ion. 132, 119–130 (2000)

    Article  Google Scholar 

  76. Xu, J., Buin, A., Ip, A.H., Li, W., Voznyy, O., Comin, R., Yuan, M., Jeon, S., Ning, Z., McDowell, J.J.: Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yuan, Y., Wang, Q., Huang, J. (2016). Ion Migration in Hybrid Perovskite Solar Cells. In: Park, NG., Grätzel, M., Miyasaka, T. (eds) Organic-Inorganic Halide Perovskite Photovoltaics. Springer, Cham. https://doi.org/10.1007/978-3-319-35114-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35114-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35112-4

  • Online ISBN: 978-3-319-35114-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics