First-Principles Modeling of Organohalide Thin Films and Interfaces

  • Edoardo Mosconi
  • Thibaud Etienne
  • Filippo De Angelis
Chapter

Abstract

Organohalide perovskites have emerged as a class of materials with a unique combination of optoelectronic properties, suitable for a plethora of applications ranging from solar cells to photoelectrochemical tandem cells, to lasing and lighting. Theoretical and computational modeling can deliver an hitherto inaccessible atomistic view of the crucial material properties and heterointerfaces ruling the operational mechanisms in all these devices. Here we present a unified view of recent activity in the computational modeling of interfaces relevant to perovskites solar cells. The performance of the proposed simulation toolbox along with the fundamental modeling strategies are illustrated using selected examples of relevant materials and representative interfaces. In particular, we discuss interfaces between the prototype methylammonium lead iodide perovskite with TiO2 and ZnO semiconductors (acting as electron selective contacts in solar cells), exploring different surface terminations and doping by chloride ions. Also the effect of defects at the interface with TiO2 is analyzed and their impact on solar cell performance is discussed. Finally, the heterogeneous interface between methylammonium lead iodide and water is analyzed, revealing dynamical hints on the perovskite degradation by water.

References

  1. 1.
    Bisquert, J.: The swift surge of perovskite photovoltaics. J. Phys. Chem. Lett. 4, 2597–2598 (2013)CrossRefGoogle Scholar
  2. 2.
    Salau, A.M.: Fundamental absorption edge in PbI2:KI alloys. Solar Energy Mater. 2, 327–332 (1980)CrossRefGoogle Scholar
  3. 3.
    Gao, P., Gratzel, M., Nazeeruddin, M.K.: Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014)CrossRefGoogle Scholar
  4. 4.
    Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  5. 5.
    Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G.: 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093Google Scholar
  6. 6.
    Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Grätzel, M., Park, N.-G.: Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci. Rep. 2, 591 (2012)Google Scholar
  7. 7.
    Lee, M.M., Teuscher, J.l., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647Google Scholar
  8. 8.
    Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.-S., Chang, J.A., Lee, Y.H., Kim, H.-J., Sarkar, A., NazeeruddinMd, K., Gratzel, M., Seok, S.I.: Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7, 486–491 (2013)CrossRefGoogle Scholar
  9. 9.
    Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Gratzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)CrossRefGoogle Scholar
  10. 10.
    Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)CrossRefGoogle Scholar
  11. 11.
    Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-B., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)CrossRefGoogle Scholar
  12. 12.
    Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014)CrossRefGoogle Scholar
  13. 13.
    Quarti, C., Mosconi, E., De Angelis, F.: Interplay of orientational order and electronic structure in methylammonium lead Iodide: implications for solar cell operation. Chem. Mater. 26, 6557–6569 (2014)CrossRefGoogle Scholar
  14. 14.
    Quarti, C., Grancini, G., Mosconi, E., Bruno, P., Ball, J.M., Lee, M.M., Snaith, H.J., Petrozza, A., Angelis, F.D.: The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2013)CrossRefGoogle Scholar
  15. 15.
    Mosconi, E., Quarti, C., Ivanovska, T., Ruani, G., De Angelis, F.: Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. Phys. Chem. Chem. Phys. 16, 16137–16144 (2014)CrossRefGoogle Scholar
  16. 16.
    Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M.: High charge carrier mobilities and lifetimes in organo lead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)CrossRefGoogle Scholar
  17. 17.
    Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)CrossRefGoogle Scholar
  18. 18.
    D’Innocenzo, V., Grancini, G., Alcocer, M.J.P., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J., Petrozza, A.: Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014)Google Scholar
  19. 19.
    Edri, E., Kirmayer, S., Henning, A., Mukhopadhyay, S., Gartsman, K., Rosenwaks, Y., Hodes, G., Cahen, D.: Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014)CrossRefGoogle Scholar
  20. 20.
    Edri, E., Kirmayer, S., Mukhopadhyay, S., Gartsman, K., Hodes, G., Cahen, D.: Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3–xClx perovskite solar cells. Nat. Commun. 5, 3461 (2014)CrossRefGoogle Scholar
  21. 21.
    Lv, H., Gao, H., Yang, Y., Liu, L.: Density functional theory (DFT) investigation on the structure and electronic properties of the cubic perovskite PbTiO3. App. Catal. A 404, 54–58 (2011)Google Scholar
  22. 22.
    Borriello, I., Cantele, G., Ninno, D.: Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. B 77, 235214 (2008)CrossRefGoogle Scholar
  23. 23.
    Castelli, I.E., Olsen, T., Datta, S., Landis, D.D., Dahl, S., Thygesen, K.S., Jacobsen, K.W.: Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ. Sci. 5, 5814–5819 (2012)CrossRefGoogle Scholar
  24. 24.
    Hedin, L.: New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965)CrossRefGoogle Scholar
  25. 25.
    Hybertsen, M.S., Louie, S.G.: Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986)CrossRefGoogle Scholar
  26. 26.
    Umari, P., Qian, X., Marzari, N., Stenuit, G., Giacomazzi, L., Baroni, S.: Accelerating GW calculations with optimal polarizability basis. Phys. Status Solidi B 248, 527–536 (2011)CrossRefGoogle Scholar
  27. 27.
    Di Valentin, C., Pacchioni, G., Selloni, A.: Electronic structure of defect states in hydroxylated and reduced rutile TiO2 (110) surfaces. Phys. Rev. Lett. 97, 166803 (2006)CrossRefGoogle Scholar
  28. 28.
    Berger, R.F., Neaton, J.B.: Computational design of low-band-gap double perovskites. Phys. Rev. B 86, 165211 (2012)CrossRefGoogle Scholar
  29. 29.
    Umebayashi, T., Asai, K., Kondo, T., Nakao, A.: Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67, 155405 (2003)CrossRefGoogle Scholar
  30. 30.
    Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Grätzel, M., White, T.J.: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013)CrossRefGoogle Scholar
  31. 31.
    Takahashi, Y., Obara, R., Lin, Z.-Z., Takahashi, Y., Naito, T., Inabe, T., Ishibashi, S., Terakura, K.: Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563–5568 (2011)CrossRefGoogle Scholar
  32. 32.
    Mosconi, E., Amat, A., Nazeeruddin, M.K., Grätzel, M., De Angelis, F.: First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902–13913 (2013)CrossRefGoogle Scholar
  33. 33.
    Even, J., Pedesseau, L., Jancu, J.-M., Katan, C.: Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013)CrossRefGoogle Scholar
  34. 34.
    Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting Tin and Lead Iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013)CrossRefGoogle Scholar
  35. 35.
    Papavassiliou, G.C., Koutselas, I.B.: Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systems. Synthetic Met. 71, 1713–1714 (1995)CrossRefGoogle Scholar
  36. 36.
    Chung, I., Lee, B., He, J., Chang, R.P.H., Kanatzidis, M.G.: All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012)CrossRefGoogle Scholar
  37. 37.
    Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A.K., Liu, B., Nazeeruddin, M.K., Grätzel, M.: Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012)CrossRefGoogle Scholar
  38. 38.
    Sakuma, R., Friedrich, C., Miyake, T., Blügel, S., Aryasetiawan, F.: GW calculations including spin-orbit coupling: application to Hg chalcogenides. Phys. Rev. B 84, 085144 (2011)CrossRefGoogle Scholar
  39. 39.
    Umari, P., Mosconi, E., De Angelis, F.: Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014)CrossRefGoogle Scholar
  40. 40.
    Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)CrossRefGoogle Scholar
  41. 41.
    Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., Mosca, R.: MAPbI3−xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613–4618 (2013)CrossRefGoogle Scholar
  42. 42.
    Yamada, K., Nakada, K., Takeuchi, Y., Nawa, K., Yamane, Y.: Tunable perovskite semiconductor CH3NH3SnX3 (X: Cl, Br, or I) characterized by X-ray and DTA. Bull. Chem. Soc. Jpn. 84, 926–932 (2011)CrossRefGoogle Scholar
  43. 43.
    Zhao, Y., Zhu, K.: CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412–9418 (2014)CrossRefGoogle Scholar
  44. 44.
    Edri, E., Kirmayer, S., Kulbak, M., Hodes, G., Cahen, D.: Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. J. Phys. Chem. Lett. 5, 429–433 (2014)CrossRefGoogle Scholar
  45. 45.
    Conings, B., Baeten, L., De Dobbelaere, C., D’Haen, J., Manca, J., Boyen, H.-G.: Perovskite-based hybrid solar cells exceeding 10 % efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 26, 2041–2046 (2013)CrossRefGoogle Scholar
  46. 46.
    Kim, H.-B., Choi, H., Jeong, J., Kim, S., Walker, B., Song, S., Kim, J.Y.: Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. NanoscaleGoogle Scholar
  47. 47.
    Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G., Yang, Y.: Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2013)CrossRefGoogle Scholar
  48. 48.
    Qiu, J., Qiu, Y., Yan, K., Zhong, M., Mu, C., Yan, H., Yang, S.: All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5, 3245–3248 (2013)CrossRefGoogle Scholar
  49. 49.
    Liang, P.-W., Liao, C.-Y., Chueh, C.-C., Zuo, F., Williams, S.T., Xin, X.-K., Lin, J., Jen, A.K.Y.: Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014)CrossRefGoogle Scholar
  50. 50.
    Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A., Snaith, H.J.: Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014)CrossRefGoogle Scholar
  51. 51.
    Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)CrossRefGoogle Scholar
  52. 52.
    Kim, H.-S., Mora-Sero, I., Gonzalez-Pedro, V., Fabregat-Santiago, F., Juarez-Perez, E.J., Park, N.-G., Bisquert, J.: Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4 (2013)Google Scholar
  53. 53.
    Poglitsch, A., Weber, D.: Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987)CrossRefGoogle Scholar
  54. 54.
    Amat, A., Mosconi, E., Ronca, E., Quarti, C., Umari, P., Nazeeruddin, M.K., Grätzel, M., De Angelis, F.: Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014)CrossRefGoogle Scholar
  55. 55.
    Roiati, V., Mosconi, E., Listorti, A., Colella, S., Gigli, G., De Angelis, F.: Stark effect in perovskite/TiO2 solar cells: evidence of local interfacial order. Nano Lett. 14, 2168–2174 (2014)CrossRefGoogle Scholar
  56. 56.
    Mitzi, D.B.: Solution-processed inorganic semiconductors. J. Mater. Chem. 14, 2355–2365 (2004)CrossRefGoogle Scholar
  57. 57.
    Mosconi, E., Ronca, E., De Angelis, F.: First-principles investigation of the TiO2/organohalide perovskites interface: the role of interfacial chlorine. J. Phys. Chem. Lett. 5, 2619–2625 (2014)CrossRefGoogle Scholar
  58. 58.
    Feng, H.-J., Paudel, T.R., Tsymbal, E.Y., Zeng, X.C.: Tunable optical properties and charge separation in CH3NH3SnxPb1–xI3/TiO2-based planar perovskites cells. J. Am. Chem. Soc. 137, 8227–8236 (2015)CrossRefGoogle Scholar
  59. 59.
    Lindblad, R., Bi, D., Park, B.-W., Oscarsson, J., Gorgoi, M., Siegbahn, H., Odelius, M., Johansson, E.M.J., Rensmo, H.: Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett. 5, 648–653 (2014)CrossRefGoogle Scholar
  60. 60.
    Miller, E.M., Zhao, Y., Mercado, C.C., Saha, S.K., Luther, J.M., Zhu, K., Stevanovic, V., Perkins, C.L., van de Lagemaat, J.: Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Phys. Chem. Chem. Phys. 16, 22122–22130 (2014)CrossRefGoogle Scholar
  61. 61.
    Schulz, P., Edri, E., Kirmayer, S., Hodes, G., Cahen, D., Kahn, A.: Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377–1381 (2014)CrossRefGoogle Scholar
  62. 62.
    Baena, J.P.C., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T.J., Kandada, A.R.S., Zakeeruddin, S. M., Petrozza, A., Abate, A., Nazeeruddin, M.K., Gratzel, M., Hagfeldt, A.: Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928–2934 (2015)Google Scholar
  63. 63.
    Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S.M., Nazeeruddin, M.K., Grätzel, M.: Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015)Google Scholar
  64. 64.
    Roldan-Carmona, C., Gratia, P., Zimmermann, I., Grancini, G., Gao, P., Graetzel, M., Nazeeruddin, M.K.: High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy Environ. Sci. 8, 3550–3556 (2015)CrossRefGoogle Scholar
  65. 65.
    Mosconi, E., Grancini, G., Roldan-Carmona, C., Gratia, P., Zimmermann, I., Nazeeruddin, M.K., De Angelis, F.: Enhanced TiO2/MAPbI3 electronic coupling by interface modification with PbI2. Chem. Mater. (submitted to, 2016)Google Scholar
  66. 66.
    Yang, J., Siempelkamp, B.D., Mosconi, E., De Angelis, F., Kelly, T.L.: Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem, Mater (2015)Google Scholar
  67. 67.
    Azpiroz, J.M., Mosconi, E., Bisquert, J., De Angelis, F.: Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015)CrossRefGoogle Scholar
  68. 68.
    Agiorgousis, M.L., Sun, Y.-Y., Zeng, H., Zhang, S.: Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 136, 14570–14575 (2014)CrossRefGoogle Scholar
  69. 69.
    Buin, A., Pietsch, P., Xu, J., Voznyy, O., Ip, A.H., Comin, R., Sargent, E.H.: Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014)CrossRefGoogle Scholar
  70. 70.
    Du, M.H.: Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014)CrossRefGoogle Scholar
  71. 71.
    Walsh, A., Scanlon, D.O., Chen, S., Gong, X.G., Wei, S.-H.: Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 53, 1–5 (2014)CrossRefGoogle Scholar
  72. 72.
    Yin, W.-J., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014)CrossRefGoogle Scholar
  73. 73.
    Almora, O., Zarazua, I., Mas-Marza, E., Mora-Sero, I., Bisquert, J., Garcia-Belmonte, G.: Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells. J. Phys. Chem. Lett. 6, 1645–1652 (2015)CrossRefGoogle Scholar
  74. 74.
    Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., Huang, J.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2014)CrossRefGoogle Scholar
  75. 75.
    Mosconi, E., Amat, A., Nazeeruddin, K., Grätzel, M., De Angelis, F.: First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117 (2013)Google Scholar
  76. 76.
    Du, M.-H.: Density functional calculations of native defects in CH3NH3PbI3: effects of spin-orbit coupling and self-interaction error. J. Phys. Chem. Lett. 6, 1461–1466 (2015)CrossRefGoogle Scholar
  77. 77.
    Bergmann, V.W., Weber, S.A.L., Ramos, F.J., Nazeeruddin, M.K., Grätzel, M., Li, D., Domanski, A.L., Lieberwirth, I., Ahmad, S.: Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 1–9 (2014)Google Scholar
  78. 78.
    Edri, E., Kirmayer, S., Mukhopadhyay, S., Gartsman, K., Hodes, G., Cahen, D.: Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3–xClx perovskite solar cells. Nat. Commun. 1–8 (2014)Google Scholar
  79. 79.
    Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T.-W., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)CrossRefGoogle Scholar
  80. 80.
    Xing, G., Wu, B., Chen, S., Chua, J., Yantara, N., Mhaisalkar, S., Mathews, N., Sum, T.C.: Interfacial electron transfer barrier at compact TiO2/CH3NH3PbI3 heterojunction. Small 11, 3606–3613 (2015)CrossRefGoogle Scholar
  81. 81.
    Niu, G., Li, W., Meng, F., Wang, L., Dong, H., Qiu, Y.: Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2014)CrossRefGoogle Scholar
  82. 82.
    Yang, J., Siempelkamp, B.D., Liu, D., Kelly, T.L.: Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955–1963 (2015)CrossRefGoogle Scholar
  83. 83.
    Leguy, A., Hu, Y., Campoy-Quiles, M., Alonso, M.I., Weber, O.J., Azarhoosh, P., van Schilfgaarde, M., Weller, M.T., Bein, T., Nelson, J., Docampo, P., Barnes, P.R.F.: The reversible hydration of CH3 NH3PbI3 in films, single crystals and solar cells. Chem. Mater. 27, 3397–3407 (2015)CrossRefGoogle Scholar
  84. 84.
    Han, Y., Meyer, S., Dkhissi, Y., Weber, K., Pringle, J.M., Bach, U., Spiccia, L., Cheng, Y.-B.: Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015)CrossRefGoogle Scholar
  85. 85.
    Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014)CrossRefGoogle Scholar
  86. 86.
    Christians, J.A., Miranda Herrera, P.A., Kamat, P.V.: Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015)Google Scholar
  87. 87.
    Gottesman, R., Haltzi, E., Gouda, L., Tirosh, S., Bouhadana, Y., Zaban, A., Mosconi, E., De Angelis, F.: Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662–2669 (2014)CrossRefGoogle Scholar
  88. 88.
    Dong, X., Fang, X., Lv, M., Ling, B., Zhang, S., Ding, J., Yuan, N.: Improvement of the humidity stability of organic-inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J. Mater. Chem. A 3, 5360–5367 (2015)CrossRefGoogle Scholar
  89. 89.
    Habisreutinger, S.N., Leijtens, T., Eperon, G.E., Stranks, S.D., Nicholas, R.J., Snaith, H.J.: Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014)CrossRefGoogle Scholar
  90. 90.
    Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., Han, H.: A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014)CrossRefGoogle Scholar
  91. 91.
    Xie, F.X., Zhang, D., Su, H., Ren, X., Wong, K.S., Grätzel, M., Choy, W.C.H.: Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS Nano 9, 639–646 (2015)CrossRefGoogle Scholar
  92. 92.
    You, J., Yang, Y., Hong, Z., Song, T.-B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W.-H., Li, G.: Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014)CrossRefGoogle Scholar
  93. 93.
    Mosconi, E., Azpiroz, J.M., De Angelis, F.: Ab Initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem. Mater. 27, 4885–4892 (2015)CrossRefGoogle Scholar
  94. 94.
    Haruyama, J., Sodeyama, K., Han, L., Tateyama, Y.: Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. J. Phys. Chem. Lett. 5, 2903–2909 (2014)CrossRefGoogle Scholar
  95. 95.
    Car, R., Parrinello, M.: Unified Approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985)CrossRefGoogle Scholar
  96. 96.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Guido, L.C., Cococcioni, M., Dabo, I., Corso, A.D., Gironcoli, S.D., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009)Google Scholar
  97. 97.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  98. 98.
    Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 27, 1787–1799 (2006)CrossRefGoogle Scholar
  99. 99.
    Hailegnaw, B., Kirmayer, S., Edri, E., Hodes, G., Cahen, D.: Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543–1547 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Edoardo Mosconi
    • 1
    • 2
  • Thibaud Etienne
    • 1
  • Filippo De Angelis
    • 1
    • 2
  1. 1.Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO)CNR-ISTMPerugiaItaly
  2. 2.CompuNet, Istituto Italiano di TecnologiaGenoaItaly

Personalised recommendations