Advertisement

Introducing a Cloud Screening Detector Using Global Horizontal Irradiances in UV and PAR in Thessaloniki, Greece

  • M. M. Zempila
  • M. Taylor
  • I. Fountoulakis
  • Alkiviadis. F. Bais
  • S. Kazadzis
  • K. Fragkos
Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

In Thessaloniki, Greece, a NILU-UV multi-filter radiometer has been in regular operation since 2005 providing photosynthetically active radiation and ultraviolet (UV) measurements at 1-min intervals. In this study, a new approach to detect cloud presence based on such measurements, is evaluated with reference to all sky camera images taken at 15 min intervals during the year 2014. Daily channel measurements sampled at 1-min intervals are analyzed using singular spectrum analysis (SSA) and provide daily trend cycle, periodic and noise components for each day of the study period. A set of statistical limitations and threshold criteria are then applied to the extracted SSA components in order to detect the presence of clouds via their attenuation effect. Cloud detections are cross-referenced against all sky images for a visual confirmation and overall assessment of the algorithm.

Keywords

Photosynthetically Active Radiation Solar Irradiance Singular Spectrum Analysis Irradiance Measurement Global Horizontal Irradiance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors express their gratitude to Prof. C. Meleti for maintenance and calibration of the Kipp & Zonnen CM21 pyranometer operating in Thessaloniki, Greece.

References

  1. Ackerman SA, Holz RE, Frey R, Eloranta EW, Maddux BC, McGill M (2008) Cloud detection with MODIS. Part II: validation. J Atmos Oceanic Technol 25:1073–1086CrossRefGoogle Scholar
  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  3. Atikur Rahman Khan M, Poskitt DS (2013) A note on window length selection in singular spectrum analysis. Aust N Z J Stat 55(2):87–108CrossRefGoogle Scholar
  4. Bais AF, Drosoglou T, Meleti C, Tourpali K, Kouremeti N (2013) Changes in surface shortwave solar irradiance from 1993 to 2011 at Thessaloniki (Greece). Int J Climatol 33:2871–2876CrossRefGoogle Scholar
  5. Chen M, Davis J, Gao W (2014) A new cloud screening algorithm for ground-based direct-beam solar radiation. J Atmos Oceanic Technol 31:2591–2605CrossRefGoogle Scholar
  6. Coakley JA, Bretherton FP (1982) Cloud cover from high resolution scanner data: detecting and allowing partially filled fields of view. J Geophys Res 87:4917–4932CrossRefGoogle Scholar
  7. Derrien M, Farki B, Harang L, LeGléau H, Noyalet A, Pochic D, Sairouni A (1993) Automatic cloud detection applied to NOAA-11 /AVHRR imagery. Rem Sens Env 46(3):246–267CrossRefGoogle Scholar
  8. Emde C, Buras-Schnell R, Kylling AB, Mayer B, Gasteiger J, Hamann U, Kylling J, Richter B, Pause C, Dowling T, Bugliaro L (2015) The libRadtran software package for radiative transfer (Version 2.0). Geosci Model Dev Discuss 8:10237–10303CrossRefGoogle Scholar
  9. Gao BC, Goetz AFH, Wiscombe WJ (1993) Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 µm water vapor band. Geophys Res Lett 20(4):301–304CrossRefGoogle Scholar
  10. Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1)3:1–41Google Scholar
  11. Long CN, Ackerman TP (2000) Identification of clear skies from broadband pyranometer measurements and calculation of down-welling shortwave cloud effects. J Geophys Res 105(D12):15609–15626CrossRefGoogle Scholar
  12. Min Q, Harrison LC (1996) Cloud properties derived from surface MFRSF measurements and comparison with GOES results at the ARM SGP site. Geophys Res Lett 23(13):1641–1644CrossRefGoogle Scholar
  13. Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Am Assoc Adv Sci 243(4487):57–63Google Scholar
  14. Rossow WB, Garder LC (1993) Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J Climate 6:2341–2369CrossRefGoogle Scholar
  15. Schiffer RA, Rossow WB (1983) The international satellite cloud climatology project (ISCCP): the first project of the world climate research programme. Bull Amer Met Soc 64:779–784Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • M. M. Zempila
    • 1
    • 2
  • M. Taylor
    • 1
    • 3
  • I. Fountoulakis
    • 1
  • Alkiviadis. F. Bais
    • 1
  • S. Kazadzis
    • 4
  • K. Fragkos
    • 1
  1. 1.Laboratory of Atmospheric PhysicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsUSA
  3. 3.Atmospheric Physics and Chemistry GroupNational Observatory of AthensAthensGreece
  4. 4.PMOD/WRCDavos DorfSwitzerland

Personalised recommendations