3D Saharan Dust Variability Over Europe as Seen by CALIPSO

  • E. Marinou
  • V. Amiridis
  • S. Solomos
  • E. Proestakis
  • M. Kottas
  • P. Zanis
  • A. K. Georgoulias
  • A. Tsikerdekis
  • A. Tsekeri
  • D. Konsta
  • P. Kokkalis
  • I. Binietoglou
  • D. Balis
Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Dust is one of main aerosol types in the atmosphere and plays an important role in modulating climate via a number of complex processes. A 3D multi-year monthly mean climatology of Saharan dust advection over Europe is presented under cloud-free conditions, using an area-optimized pure dust CALIPSO product. The product has been developed by applying EARLINET-measured dust lidar ratios and depolarization-based dust discrimination methods. This approach results in a very good agreement when comparing CALIPSO AOD with AERONET retrievals over Europe/North Africa and with the MODIS/Aqua product over the Mediterranean. The processing of such purely observational data can provide seasonal patterns of pure Saharan dust transportation towards Europe and the Atlantic Ocean. The physical and optical properties of the dust layers are identified for several areas near the Saharan sources, over the Mediterranean and over continental Europe.

References

  1. Amiridis V, Wandinger U, Marinou E, Giannakaki E, Tsekeri A, Basart S, Kazadzis S, Gkikas A, Taylor M, Baldasano J, Ansmann A (2013) Optimizing CALIPSO Saharan dust retrievals. Atmos Chem Phys 13:12089–12106. doi:10.5194/acp-13-12089-2013 CrossRefGoogle Scholar
  2. Kalivitis N, Gerasopoulos E, Vrekoussis M, Kouvarakis G, Kubilay N, Hatzianastassiou N, Vardavas I, Mihalopoulos N (2007) Dust transport over the eastern Mediterranean derived from total ozone mapping spectrometer, aerosol robotic network, and surface measurements. J Geophys Res 112:D03202. doi:10.1029/2006JD007510 CrossRefGoogle Scholar
  3. Kallos G, Papadopoulos A, Katsafados P, Nickovic S (2005) Trans-Atlantic Saharan dust transport: model simulation and results. J Geophys Res 111:D09204. doi:10.1029/2005JD006207 Google Scholar
  4. Tesche M, Ansmann A, Müller D, Althausen D, Engelmann R, Freudenthaler V, Groß S (2009) Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J Geophys Res D: Atmos 114(13):D13202. doi:10.1029/2009JD011862 CrossRefGoogle Scholar
  5. Winker DM, Vaughan MA, Omar A, Hu Y, Powell KA, Liu Z, Hunt WH, Young SA (2009) Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Ocean Tech 26:2310–2323. doi:10.1175/2009JTECHA1281.1 CrossRefGoogle Scholar
  6. Winker DM, Tackett JL, Getzewich BJ, Liu Z, Vaughan MA, Rogers RR (2013) The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos Chem Phys 13:3345–3361. doi:10.5194/acp-13-3345-2013 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • E. Marinou
    • 1
    • 2
  • V. Amiridis
    • 1
  • S. Solomos
    • 1
  • E. Proestakis
    • 1
  • M. Kottas
    • 1
  • P. Zanis
    • 3
  • A. K. Georgoulias
    • 4
  • A. Tsikerdekis
    • 3
  • A. Tsekeri
    • 1
  • D. Konsta
    • 1
  • P. Kokkalis
    • 1
  • I. Binietoglou
    • 1
    • 5
  • D. Balis
    • 2
  1. 1.Institute for Astronomy Astrophysics Space Applications and Remote SensingNational Observatory of AthensAthensGreece
  2. 2.Laboratory of Atmospheric Physics, Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Department of Meteorology and Climatology, School of GeologyAristotle University of ThessalonikiThessalonikiGreece
  4. 4.Laboratory of Atmospheric Pollution and Pollution Control Engineering of Atmospheric Pollutants, Department of Environmental EngineeringDemocritus University of ThraceXanthiGreece
  5. 5.National Institute of R&D for OptoelectronicsMagureleRomania

Personalised recommendations