Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 343 Accesses

Abstract

The lower boundary of the alpine permafrost extent is thought to be especially sensitive to climate warming. Studies at a regional scale interpreted the occurrence of conspicuous debris flow activity at this margin as an indicator of a causal relationship. Yet, these studies do not adequately consider the baseline debris flow activity in alpine periglacial areas, i.e. high-altitude areas subjected to seasonal or perennial frost. Activity is likely to be innately high in these areas due to the combination of steep slopes, high regolith production rates owing to intense frost weathering, and the presence of permafrost. However, the role of periglacial influences on debris flow activity in high-alpine areas has so far not been systematically investigated. This study analyses debris flow activity in the alpine areas of the Southern Alps, New Zealand, during the last six decades. It focuses on determining debris flow preconditioning factors, i.e. the environmental conditions within source areas that facilitate debris flow development. By analysing a wide range of potential factors, including topography, lithology, and geomorphic legacy (e.g. the presence of Quaternary deposits), this study aims to determine whether debris flow systems subjected to periglacial influences, i.e. intense frost weathering and the presence of permafrost, are more active than systems outside the periglacial realm. This chapter introduces the background and rationale of this study, defines the study’s aims and objectives, and describes the thesis structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen S, Owens I, Huggel C (2008) A first estimate of mountain permafrost distribution in the Mount Cook region of New Zealand’s Southern Alps. In: Kane DL, Hinkel KM (eds) Proceedings of the ninth international conference on Permafrost, Fairbanks, pp 37–42

    Google Scholar 

  • Allen SK, Gruber S, Owens IF (2009) Exploring steep bedrock permafrost and its relationship with recent slope failures in the Southern Alps of New Zealand. Permafrost Periglac Process 20(4):345–356. doi:10.1002/ppp.658

    Article  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59(1–2):5–31. doi:10.1023/a:1024458411589

    Article  Google Scholar 

  • Berthling I, Etzelmüller B (2011) The concept of cryo-conditioning in landscape evolution. Quatern Res 75(2):378–384. doi:10.1016/j.yqres.2010.12.011

    Article  Google Scholar 

  • Blijenberg H (1998) Rolling stones? Triggering and frequency of hillslope debris flows in the Bachelard Valley, southern French Alps, vol 246. Nederlandse Geografische Studies. Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht, Utrecht

    Google Scholar 

  • Bollschweiler M, Stoffel M (2010) Tree rings and debris flows: recent developments, future directions. Prog Phys Geogr 34(5):625–645. doi:10.1177/0309133310370283

    Article  Google Scholar 

  • Bovis MJ, Jakob M (1999) The role of debris supply conditions in predicting debris flow activity. Earth Surf Proc Land 24(11):1039–1054. doi:10.1002/(SICI)1096-9837(199910)24:11<1039:AID-ESP29>3.0.CO;2-U

    Article  Google Scholar 

  • Brayshaw D, Hassan MA (2009) Debris flow initiation and sediment recharge in gullies. Geomorphology 109(3–4):122–131. doi:10.1016/j.geomorph.2009.02.021

    Article  Google Scholar 

  • Brazier V, Kirkbride MP, Owens IF (1998) The relationship between climate and rock glacier distribution in the Ben Ohau Range, New Zealand. Geografiska Annaler: Ser A, Phys Geogr 80A(3–4):193–207. doi:10.1111/j.0435-3676.1998.00037.x

    Article  Google Scholar 

  • Carrara A, Crosta G, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94(3–4):353–378. doi:10.1016/j.geomorph.2006.10.033

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  • Felderer A (2008) Erhebung und Abschätzung von geomorphologischen Gefahrenpotentialen durch Gletscherrückgang und Permafrostdegradation im Naturpark Rieserferner-Ahrn. Unpublished M.Sc. thesis, University of Vienna, Vienna

    Google Scholar 

  • French H (2007) The periglacial environment, 3rd edn. Wiley, Chichester

    Book  Google Scholar 

  • French H, Thorn CE (2006) The changing nature of periglacial geomorphology. Géomorphologie: Relief, Processus, Environment 3/2006:165–174. doi:10.4000/geomorphologie.119

  • Gruber S (2012) Derivation and analysis of a high-resolution estimate of global permafrost zonation. The Cryosphere 6:221–233. doi:10.5194/tc-6-221-2012

    Article  Google Scholar 

  • Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112(F02S18). doi:10.1029/2006jf000547

  • Haeberli W (1992) Possible effects of climate change on the evolution of Alpine Permafrost. Catena Suppl 22:23–35

    Google Scholar 

  • Haeberli W, Gruber S (2009) Global warming and mountain Permafrost. In: Permafrost soils. Soil Biology, vol 16. Springer, Berlin, pp 205–218. doi:10.1007/978-3-540-69371-0

    Google Scholar 

  • Haeberli W, Wegmann M, Vonder Muhll D (1997) Slope stability problems related to glacier shrinkage and permafrost degradation in the Alps. Eclogae Geol Helv 90(3):407–414

    Google Scholar 

  • Harris C (2005) Climate change, Mountain Permafrost degradation and geotechnical hazard. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions. Advances in global change research, vol 23. Springer, pp 215–224

    Google Scholar 

  • Harris C, Arenson LU, Christiansen HH, Etzemuller B, Frauenfelder R, Gruber S, Haeberli W, Hauck C, Holzle M, Humlum O, Isaksen K, Kääb A, Kern-Lutschg MA, Lehning M, Matsuoka N, Murton JB, Nozli J, Phillips M, Ross N, Seppala M, Springman SM, Muhll DV (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci Rev 92(3–4):117–171. doi:10.1016/j.earscirev.2008.12.002

    Article  Google Scholar 

  • Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Proc Land 37(1):77–91. doi:10.1002/esp.2223

    Article  Google Scholar 

  • Innes JL (1983) Debris flows. Prog Phys Geogr 7:469–501. doi:10.1177/030913338300700401

    Article  Google Scholar 

  • Jomelli V, Brunstein D, Chochillon C, Pech P (2003) Hillslope debris-flow frequency since the beginning of the 20th century in the Massif des Ecrins (French Alps). In: Rickenmann D, Chen C (eds) Debris-flow hazard mitigation: mechanics, prediction, and assessment. Millpress, Rotterdam, pp 127–137

    Google Scholar 

  • Jomelli V, Pech P, Chochillon C, Brunstein D (2004) Geomorphic variations of debris flows and recent climatic change in the french alps. Clim Change 64(1):77–102. doi:10.1023/B:CLIM.0000024700.35154.44

    Article  Google Scholar 

  • Jomelli V, Brunstein D, Grancher D, Pech P (2007) Is the response of hillslope debris flows to recent climate change univocal? A case study in the Massif des Ecrins (French Alps). Clim Change 85(1–2):119–137. doi:10.1007/s10584-006-9209-0

    Article  Google Scholar 

  • Kerr T (2009) Precipitation distribution in the Lake Pukaki catchment, New Zealand. Unpublished Ph.D. Thesis, Canterbury University, Christchurch

    Google Scholar 

  • Knight J, Harrison S (2009) Periglacial and paraglacial environments: a view from the past into the future. In: Knight J, Harrison S (eds) Periglacial and paraglacial processes and environments, vol 320. The Geological Society, London, pp 1–4. doi:10.1144/sp320.2

    Google Scholar 

  • Lorente A, García-Ruiz JM, Beguería S, Arnáez J (2002) Factors explaining the spatial distribution of hillslope debris flows—A case study in the Flysch Sector of the Central Spanish Pyrenees. Mt Res Dev 22(1):32–39. doi:10.1659/0276-4741(2002)022[0032:fetsdo]2.0.co;2

    Article  Google Scholar 

  • Marchi L, Chiarle M, Mortara G (2008) Climate changes and debris flows in periglacial areas in the Italian Alps. In: Taniguchi M, Burnett WC, Fukushima Y, Haigh M, Umezawa Y (eds) International conference on hydrological changes and management—From headwaters to the ocean: hydrological change and water management-hydrochange 2008, Kyoto, pp 111–115

    Google Scholar 

  • Rieger D (1999) Bewertung der naturräumlichen Rahmenbedingungen für die Entstehung von Hangmuren - Möglichkeiten zur Modellierung des Murpotentials, vol A 51. Münchener Geographische Abhandlungen. Institut für Geographie der Universität München, München

    Google Scholar 

  • Sattler K, Keiler M, Zischg A, Schrott L (2011) On the connection between debris flow activity and permafrost degradation: a case study from the schnalstal, South Tyrolean Alps, Italy. Permafrost Periglac Process 22(3):254–265. doi:10.1002/ppp.730

    Article  Google Scholar 

  • Schneuwly-Bollschweiler M, Stoffel M (2012) Hydrometeorological triggers of periglacial debris flows in the Zermatt valley (Switzerland) since 1864. J Geophys Res 117:F02033. doi:10.1029/2011jf002262

    Article  Google Scholar 

  • Sevruk B, Mieglitz K (2002) The effect of topography, season and weather situation on daily precipitation gradients in 60 Swiss valleys. Water Sci Technol 45(2):41–48

    Google Scholar 

  • Soons JM, Price LW (1990) Periglacial phenomena in New Zealand. Permafrost Periglac Process 1(2):145–159

    Article  Google Scholar 

  • Stoffel M, Huggel C (2012) Effects of climate change on mass movements in mountain environments. Prog Phys Geogr 36(3):421–439. doi:10.1177/0309133312441010

    Article  Google Scholar 

  • Stötter J (1994) Veränderungen der Kryoshäre in Vergangenheit und Zukunft sowie Folgeerscheinungen - Untersuchungen in ausgewählten Hochgebirgsräumen im Vinschgau. Unpublished habilitation, Ludwig-Maximilians-Universität, Munich

    Google Scholar 

  • Van Steijn H, Bertran P, Francou B, Texier J-P, Hétu B (1995) Models for the genetic and environmental interpretation of stratified slope deposits: review. Permafrost Periglac Process 6(2):125–146. doi:10.1002/ppp.3430060210

    Article  Google Scholar 

  • Warburton J (2007) Sediment budgets and rates of sediment transfer across cold environments in Europe: a commentary. Geografiska Annaler: Ser A, Phys Geogr 89(1):95–100. doi:10.1111/j.1468-0459.2007.00310.x

    Article  Google Scholar 

  • Whitehouse IE, Pearce AJ (1992) Shaping the mountains of New Zealand. In: Soons JM, Selby MJ (eds) Landforms of New Zealand. Longman Paul, Auckland, pp 144–160

    Google Scholar 

  • Zimmermann M, Haeberli W (1992) Climatic change and debris flow activity in high-mountain areas. A case study in the Swiss Alps. Catena Suppl 22:59–72

    Google Scholar 

  • Zischg A, Curtaz M, Galuppo A, Lang K, Mayr V, Riedl C, Schoeneich P (2011) Chapter 2: Permafrost and debris-flows. Hazards related to permafrost and to permafrost degradation. PermaNET project, State-of-the-art report 6.2 available: http://www.permanet-alpinespace.eu/archive/pdf/WP6_2_debris_flows.pdf. Accessed 28 Feb 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Sattler .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sattler, K. (2016). Introduction. In: Periglacial Preconditioning of Debris Flows in the Southern Alps, New Zealand. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-35074-5_1

Download citation

Publish with us

Policies and ethics