Skip to main content

Climate Change: Impacts on Carbon Sequestration, Biodiversity and Agriculture

  • Chapter
  • First Online:
Soil Science: Agricultural and Environmental Prospectives
  • 2642 Accesses

Abstract

Climate change is a wider term and encompasses every aspect of biotic and abiotic life. Climate plays a very basic and significant role in the biology of living things. As a result the key factor amongst many to determine life in specific region thousands of years ago is the fact that various climate cycles existed at that place at that times. The recent decades have witnessed drastic changes in climate because of rise in atmospheric carbondioxide (CO2) and ozone (O3) levels leading to increase in temperature, melting of glaciers and rise in sea level. The ultimate trends that CO2 and climate will constitute in the future are unknown. However, the researchers have been raising questions about carbon sequestration, food security, and crop productivity in the field of agriculture and extinction of species in the field of biodiversity. The term carbon sequestration implies the ways and means through which atmospheric carbon is transferred into the long lived pools and storing it safely in a way that it may not be re-emitted into the atmosphere. Anthropogenic activities, over a period of time have raised serious concerns to sequester carbon and lower down its concentration in the atmosphere, hence leading to drastic climate changes. Since it is not possible to cover all aspects of climate change, in this review we have emphasized on green house and non-green house aspects of climate change and their potential of global warming, implications on carbon sequestration sustainability and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Alo CA, Wang GL (2008) Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. J Geophy Res Biogeosci 113:16

    Google Scholar 

  • Armstrong RD, Millar G, Halpin NV, Reid DJ, Standley J (2003) Using zero tillage, fertilizers and legume rotations to maintain productivity and soil fertility in opportunity cropping systems on a shallow Vertosol. Aust J Exp Agric 43:141–153

    Article  CAS  Google Scholar 

  • Aune JA, Lal R (1997) Agricultural productivity in the tropics and critical limits of properties of oxisols, ultisols, and alfisols. Trop Agric 74:96–103

    Google Scholar 

  • Barraclough D, Smith P, Worrall F, Black HIJ, Bhogal A (2015) Is there an impact of climate change on soil carbon contents in England and Wales? Eur J Soil Sci 66:451–462

    Article  CAS  Google Scholar 

  • Bauer A, Black AL (1994) Quantification of the effect of soil organic matter content on soil productivity. Soil Sci Soc Am J 58:185–193

    Article  Google Scholar 

  • Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W (2011) Impacts of climate change on the world’s most exceptional eco-regions. Proc Natl Acad Sci U S A 108:2306–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beddington JR, Asaduzzaman M, Clark ME, Fernández Bremauntz A, Guillou MD, Howlett DJB, Jahn MM, Lin E, Mamo T, Negra C, Nobre CA, Scholes RJ, Van Bo N, Wakhungu J (2012) What next for agriculture after Durban? Science 335:289–290

    Article  CAS  PubMed  Google Scholar 

  • Bell G, Gonzalez A (2009) Evolutionary rescue can prevent extinction following environmental change. Ecol Lett 12:942–948

    Article  PubMed  Google Scholar 

  • Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248

    Article  CAS  PubMed  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, Han XG, Jiang GM (2008) Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past. Glob Change Biol 14:46–59

    Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582

    Article  CAS  PubMed  Google Scholar 

  • Botkin DB, Saxe H, Araujo MB, Betts R, Bradshaw RHW, Cedhagen T, Chesson P, Dawson TP, Etterson JR, Faith DR, Ferrier S, Guisan A, Hansen AS, Hilbert DW, Loehle C, Margules C, New M, Sobel MJ, Stockwell DRB (2007) Forecasting the effects of global warming on biodiversity. Bioscience 57:227–236

    Article  Google Scholar 

  • Bullister JL (2015) Atmospheric histories (1765–2015) for CFC-11, CFC-12, CFC-113, CCl4, SF6 and N2O. US department of energy. Available from: http://cdiac.ornl.gov/ftp/oceans/CFC_ATM_Hist/CFC_ATM_Hist_2015/NDP_095(2015).pdf. 20 Sept 2015

  • Campbell A, Kapos V, Scharlemann JPW, Bubb P, Chenery A, Coad L, Dickson B, Doswald N, Khan MSI, Kershaw F, Rashid M (2009) Review of the literature on the links between biodiversity and climate change: impacts, adaptation and mitigation. In: Diversity SotCoB (ed) CBD technical series n°42. Secretariat of the Convention on Biological Diversity, Montreal, p 124

    Google Scholar 

  • Cape JN (2008) Surface ozone concentrations and ecosystem health: past trends and a guide to future projections. Sci Total Environ 400:257–269

    Article  CAS  PubMed  Google Scholar 

  • Cassman K (1999a) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci U S A 96:5952–5959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassman K (1999b) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA 96:5952–5959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CCSP (2008a) Analyses of the effects of global change on human health and welfare and human systems. A report by the U.S. climate change science program and the subcommittee on global change research. In: Gamble JL (eds) Ebi KL, Sussman FG, Wilbanks TJ (authors) U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • CCSP (2008b) Preliminary review of adaptation options for climate-sensitive ecosystems and resources. A report by the U.S. climate change science program and the subcommittee on global change research. Julius SH, West JS (eds) Baron JS, Griffith B, Joyce LA, Kareiva P, Keller BD, Palmer MA, Peterson CH, Scott JM (authors). U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803

    Article  CAS  PubMed  Google Scholar 

  • Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity and extinction in a changing environment: towards a predictive theory. PLoS Biol 8:e1000357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cowie J (2013) Climate change: biological and human aspects. 2nd edn. Cambridge University Press, Cambridge, pp 4–256

    Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies WJ, Zhang J, Yang J, Dodd IC (2010) Novel crop science to improve yield and resource use efficiency in water-limited agriculture. J Agric Sci 149:123–131

    Article  Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    Article  CAS  PubMed  Google Scholar 

  • Dı́az-Zorita MN, Duarte GA, Grove JH (2002) A review of no-till systems and soil management for sustainable crop production in the sub-humid and semiarid Pampas of Argentina. Soil Tillage Res 65:1–18

    Article  Google Scholar 

  • Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett L08706

    Google Scholar 

  • Emmet BA, Reynolds B, Chamberlain PM, Rowe E, Spurgeon D, Brittain SA, Frogbrook Z, Hughes S, Lawlor AJ, Poskitt J, Potter E, Robinson DA, Scott A, Wood C, Woods C (2010) Countryside survey: soils report from 2007. Technical report no 9/07, NERC/Centre for Ecology and Hydrology, Wallingford

    Google Scholar 

  • EPA (2015) Climate impacts on agriculture and food supply. Available from: http://www.epa.gov/climatechange/impacts/agriculture.html. 15 Sept 2015

  • Evans L (1996) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge

    Google Scholar 

  • Fan M, Lu S, Jiang R, Liu X, Zhang F (2009) Triangular transplanting pattern and split nitrogen fertilizer application increase rice yield and nitrogen fertilizer recovery. Agron J 101:1421–1425

    Article  CAS  Google Scholar 

  • Fan M, Shen J, Yuan L, Jiang R, Chen X, Davies WJ, Zhang F (2012) Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J Exp Bot 63:13–24

    Article  CAS  PubMed  Google Scholar 

  • Fantappie M, L’Abate G, Costanini EAC (2011) The influence of climate change on the soil organic carbon content in Italy from 1961 to 2008. Geomorphol 135:343–352

    Article  Google Scholar 

  • Field CB, Mortsch LD, Brklacich M, Forbes DL, Kovacs P, Patz JA, Running SW, Scott MJ (2007) North America. In: Climate change. 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Cambridge University Press, Cambridge

    Google Scholar 

  • Forero-Medina G, Joppa L, Pimm SL (2010) Constraints to species elevational range shifts as climate changes. Conserv Biol 25:163–171

    Article  PubMed  Google Scholar 

  • Foukal P, North G, Wigley T (2004) A stellar view on solar variations and climate. Science 306:68–69

    Article  CAS  PubMed  Google Scholar 

  • Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester- Bradley R, Martre P, Calderini DF, Reynolds MP (2010) Raising yield potential in wheat: optimizing partitioning to grain yield while maintaining lodging resistance. J Exp Bot 62:469–486

    Article  PubMed  CAS  Google Scholar 

  • Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trend Ecol Evol 25:325–331

    Article  Google Scholar 

  • Global Carbon Project (2011) Carbon budget and trends 2010. Available from: http://www.globalcarbonproject.org/carbonbudget. Sept 12 2015

  • Grace PR, Oades JM, Keith H, Hancock TW (1995) Trends in wheat yields and soil organic carbon in the permanent rotation trial at the waite agricultural research institute, South Australia. Aust J Exp Agric 35:857–864

    Article  CAS  Google Scholar 

  • Hakeem KR (2015) Crop production and global environmental issues. Springer International Publishing AG, Cham, p 598

    Book  Google Scholar 

  • Hakeem KR, Sabir M, Ozturk M, Mermut A (2014) Soil remediation and plants: prospects and challenges. Academic/Elsevier, New York, p 724

    Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  Google Scholar 

  • Huang Y, Tang Y (2010) An estimate of greenhouse gas (N2O and CO2) mitigation potential under various scenarios of nitrogen use efficiency in Chinese croplands. Glob Change Biol 16:2958–2970

    Google Scholar 

  • Hulme M (2009) On the origin of ‘the greenhouse effect’: John Tyndall’s 1859 interrogation of nature. Weather 64:121–123

    Article  Google Scholar 

  • IFDC (2000) International fertilizer development Centre. World fertilizer consumption, Muscle Shoals

    Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson E, Heinen R (2004) Carbon trading: time for industry involvement. Environ Intl 30:279–288

    Article  CAS  Google Scholar 

  • Johnston AE (1986) Soil organic matter, effects on soils and crops. Soil Use Manag 2:97–105

    Article  Google Scholar 

  • Kanchikerimath M, Singh D (2001) Soil organic matter and biological properties after 26 years of maize–wheat–cowpea cropping as affected by manure and fertilization in a Cambisol in semiarid region of India. Agri Ecosys Environ 86:155–162

    Article  CAS  Google Scholar 

  • Kapkiyai JJ, Karanja NK, Qureshi JN, Smithson PC, Woomer PL (1999) Soil organic matter and nutrient dynamics in a Kenyan nitisol under long-term fertilizer and organic input management. Soil Biol Biochem 31:1773–1782

    Article  CAS  Google Scholar 

  • Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13:1459–1474

    Article  Google Scholar 

  • Koh LP, Dunn RR, Sodhi NS, Colwell RK, Proctor HC, Smith VS (2004) Species co-extinctions and the biodiversity crisis. Science 305:1632–1634

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2003a) Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci 22:151–184

    Article  Google Scholar 

  • Lal R (2003b) Soil erosion and the global carbon budget. Environ Intl 29:437–450

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Kimble JM, Follett RF (2001) Methodological challenges toward balance soil C pools and fluxes. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Assessment methods for soil carbon. Lewis Publishers, Boca Raton

    Google Scholar 

  • Lapola DM, Oyama MD, Nobre CA (2009) Exploring the range of climate biome projections for tropical South America: the role of CO2 fertilization and seasonality. Global Biogeochem Cy 23:1–16

    Article  CAS  Google Scholar 

  • Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Ann Rev Ecol Evol Syst 41:321–350

    Article  Google Scholar 

  • Leadley P, Pereira HM, Alkemade R, Fernandez-Manjarres JF, Proenca V, Scharlemann JPW, Walpole MJ (2010) Biodiversity scenarios: projections of 21st century change in biodiversity and associated ecosystem services. In: Secretariat of the convention on biological diversity (ed. Diversity SotCoB). Technical series no. 50. Published by the Secretariat of the Convention on Biological Diversity, Montreal, pp 1–132

    Google Scholar 

  • Leung DYC, Caramanna G, Maroto-Valer M (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Rev 39:426–443

    Article  CAS  Google Scholar 

  • Levy R (ed) (1984) Chemistry of irrigated soils. Van Nostrand-Reinhold, New York, pp 182–229

    Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Bonfils C, Duffy PB (2007) Climate change uncertainty for daily minimum and maximum temperatures: a model inter-comparison. Geophys Res Lett 34:L05715

    Article  Google Scholar 

  • McKee IF, Mulholland BJ, Craigon J, Black CR, Long SP (2000) Elevated concentrations of atmospheric CO2 protect against and compensate for O3 damage to photosynthetic tissues of field-grown wheat. New Phytol 146:427–435

    Article  CAS  Google Scholar 

  • McMahon SM, Harrison SP, Armbruster WS, Patrick BPJ, Beale CM, Edwards ME, Kattge J, Midgley G, Morin X, Prentice IC (2011) Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trend Ecol Evol 26:249–259

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Meyers LA, Bull JJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trend Ecol Evol 17:551–557

    Article  Google Scholar 

  • Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos Trans R Soc Spec Issue Sust Agric 363:639–658

    CAS  Google Scholar 

  • National Oceanic and Atmospheric Administration (2015) Climate monitoring, greenhouse gases. Available from: https://www.ncdc.noaa.gov/monitoring references/faq/greenhouse-gases.php. 15 Sept 2015

  • Nordt LC, Wilding LP, Drees LR (2000) Pedogenic carbonate transformation in leaching soil sysems: implications for the global C cycle. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonate. Lewis Publishers, Boca Raton, pp 43–64

    Google Scholar 

  • Oltmans SJ, Lefohn AS, Harris JM, Galbally I, Scheel HE, Bodeker G, Brunke E, Claude H, Tarasick D, Johnson BJ, Simmonds P, Shadwick D, Anlauf K, Hayden K, Schmidlin F, Fujimoto T, Akagi K, Meyer C, Nichol S, Davies J, Redondas A, Cuevas E (2006) Long-term changes in tropospheric ozone. Atm Environ 40:3156–3173

    Article  CAS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ecol Evol 37:637–669

    Google Scholar 

  • Parmesan C, Duarte CM, Poloczanska E, Richardson AJ, Singer MC (2011) Overstretching attribution. Nat Clim Change 1:2–4

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proenca V, Alkemade R, Scharlemann JPW, Fernandez-Manjarres JF, Araújo MB (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  CAS  PubMed  Google Scholar 

  • Petchawee S, Chaitep W (1995) Organic matter management for sustainable agriculture. In: LeFroy RDB, Blaci GJ, Craswell ET (eds) Organic matter management in upland systems in Thailand. ICIAR, Canberra, pp 21–26

    Google Scholar 

  • Phillips BL (2009) The evolution of growth rates on an expanding range edge. Biol Lett 5:802–804

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieri C (1986) Fertilisation des cultures vivrie’res et fertilite’ des sols en agriculture paysanne subsaharienne. Agronomie Tropicale 41:1–20

    Google Scholar 

  • Rafferty NE, Ives AR (2010) Effects of experimental shifts in flowering phenology on plant–pollinator interactions. Ecol Lett 14:69–74

    Article  PubMed  Google Scholar 

  • Ray JD, Gesch RW, Sinclair TR, Hartwell AL (2002) The effect of vapor pressure deficit on maize transpiration response to a drying soil. Plant Soil 239:113–121

    Article  CAS  Google Scholar 

  • Reynolds MP, Balota M, Delgado M, Amani I, Fischer RA (1994) Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust J Plant Physiol 21:717–730

    Article  Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302:1917–1919

    Article  CAS  PubMed  Google Scholar 

  • Sala OE, Detlef van Vuuren D, Pereira HM, Lodge D, Alder J, Cumming G, Dobson A, Wolters V, Xenopoulos MA (2005) Chapter 10: biodiversity across scenarios. In: Ecosystems and human well-being, vol. 2: scenarios. Island Press, Washington, DC, pp 375–408

    Google Scholar 

  • Salamin N, Wüest RO, Lavergne S, Thuiller W, Pearman PB (2010) Assessing rapid evolution in a changing environment. Tren Ecol Evol 25:692–698

    Article  Google Scholar 

  • Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295:2019–2020

    Article  CAS  PubMed  Google Scholar 

  • Sartaj AW, Sofi MN, Chand S, Hakeem KR (2016) Soil carbon sequestration: as a climate change adaptation and mitigation strategy – An overview. Int J Plant Anim Environ Sci 6(1):227–232

    Google Scholar 

  • Sauerbeck DR (2001) CO2 emissions and C sequestration by agriculture – perspectives and limitations. Nutr Cycl Agroecosys 60:253–266

    Article  Google Scholar 

  • Silver WL, Ostertag R, Lugo AE (2000) The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor Ecol 8:394–407

    Article  Google Scholar 

  • Six J, Feller C, Denef K, Ogle S, Moraes JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils – effects of no-tillage. Agronomie 22:755–775

    Article  Google Scholar 

  • Smith P, Goulding K, Smith K, Powlson D, Smith J, Falloon P, Coleman K (2001) Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nutr Cycl Agroecosys 60:237–252

    Article  Google Scholar 

  • Smith P, Fang C, Dawson JJC, Moncreiff JB (2008) Impact of global warming on soil carbon. Adv Agron 97:1–43

    Article  CAS  Google Scholar 

  • Stone P (2001) The effects of heat stress on cereal yield and quality. In: Basra AS (ed) Crop responses and adaptations to temperature stress. Food Products Press, Binghamton, pp 243–291

    Google Scholar 

  • Swaminathan M (2000) An evergreen revolution. Biol Inst Biol 47:85–89

    CAS  Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Change Biol 14:565–575

    Article  Google Scholar 

  • Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agri Forest Meteor 170:206–215

    Article  Google Scholar 

  • Tewksbury JJ, Huey RB, Deutsch CA (2008) Ecology – putting the heat on tropical animals. Science 320:1296–1297

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson RW, Milne RM (2006) Soil carbon stocks and land cover in Northern Ireland from 1939 to 2000. Appl Geogr 26:18–39

    Article  Google Scholar 

  • Tyndall J (1861) On the absorption and radiation of heat by gases and vapours. Philos Mag 22:169–285

    Google Scholar 

  • U.S. Census Bureau (2011) The 2011 statistical abstract: international statistics. U.S. Census Bureau, Washington, DC USA http://www.census.gov/library/publications/2010/compendia/statab/130ed.html

  • USGCRP (2009) Global climate change impacts in the United States. In: Karl TR, Melillo JM, Peterson TC (eds) United States global change research program. Cambridge University Press, New York

    Google Scholar 

  • Van Dingenen R, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of O3 on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618

    Article  CAS  Google Scholar 

  • Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc R Soc B-Biol Sci 275:649–659

    Article  Google Scholar 

  • Walther GR (2010) Community and ecosystem responses to recent climate change. Phil Trans Soc B-Biol Sci 365:2019–2024

    Article  Google Scholar 

  • Wang Y, Xie Z, Malhi S, Vera C, Wang J (2009) Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China. Agric Water Manag 96:374–382

    Article  Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Amer J 66:1930–1940

    Article  CAS  Google Scholar 

  • Wild M (2012) Enlightening global dimming and brightening. Bull Am Meteorol Soc 93:27–37

    Article  Google Scholar 

  • Wilkinson S, Mills G, Illidge R, Davies WJ (2012) How is ozone pollution reducing our food supply? J Exp Bot 63:527–536

    Article  CAS  PubMed  Google Scholar 

  • Yamoah CF, Bationo A, Shapiro B, Koala S (2002) Trend and stability analyses of millet yields treated with fertilizer and crop residues in the Sahel. Field Crops Res 75:53–62

    Article  Google Scholar 

  • Yang LH, Rudolf VHW (2010) Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol Lett 13:1–10

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang J (2010) Crop management techniques to enhance harvest index in rice. J Exp Bot 61:3177–3189

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Cui Z, Wang J, Li C, Chen X (2007) Current status of soil and plant nutrient management in China and improvement strategies. Chinese Bull Bot 24:687–694

    Google Scholar 

  • Zhang F, Shen J, Zhang J, Zuo Y, Li L, Chen X (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Adv Agron 107:1–32

    Article  CAS  Google Scholar 

  • Zhang F, Cui Z, Fan M, Zhang W, Chen X, Jiang R (2011) Integrated soil–crop systems management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. J Environ Qual 40:1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH, Blumenthal DM, Runion GB, Hunt ER, Diaz-Soltero H (2011) Invasive species and climate change: an agronomic perspective. Climatic Change 105:13–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahmad, Z., Tahir, S. (2016). Climate Change: Impacts on Carbon Sequestration, Biodiversity and Agriculture. In: Hakeem, K., Akhtar, J., Sabir, M. (eds) Soil Science: Agricultural and Environmental Prospectives. Springer, Cham. https://doi.org/10.1007/978-3-319-34451-5_18

Download citation

Publish with us

Policies and ethics