Hepatocellular Carcinoma pp 43-63

Part of the Current Clinical Oncology book series (CCO) | Cite as

Molecular Mechanisms of Hepatocellular Carcinoma

  • Hani Alotaibi
  • Nese Atabey
  • Kasım Diril
  • Esra Erdal
  • Mehmet Ozturk
Chapter

Abstract

Hepatocellular carcinoma is a highly heterogeneous disease for different reasons. First, there are multiple and highly variable etiological factors including viruses with a DNA (HBV) or RNA (HCV) genome, chemicals (alcohol and aflatoxins), and inborn and acquired metabolic diseases. Second, these cancers might originate either from mature hepatocytes or from progenitor cells. Third, like other cancers, HCC undergoes a dynamic process changing morphology and molecular features as it advances. Therefore, molecular mechanisms of hepatocellular carcinogenesis may vary depending on different factors and this is probably why a large set of mechanisms have been associated with these tumors. Among many different mechanisms described, we review here those that we believe are the most prominent ones including loss of cell cycle control, escape from senescence control, resistance to cell death, phenotypic plasticity, motility, invasion, and metastasis.

References

  1. 1.
    Hanahan D, Weinberg Robert A. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Ozen C, Yildiz G, Dagcan AT, Cevik D, Ors A, Keles U, Topel H, Ozturk M. Genetics and epigenetics of liver cancer. New Biotechnol. 2013;30:381–4.CrossRefGoogle Scholar
  3. 3.
    Bisteau X, Caldez MJ, Kaldis P. The complex relationship between liver cancer and the cell cycle: a story of multiple regulations. Cancers. 2014;6:79–111.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Michalopoulos GK. Liver regeneration after partial hepatectomy. Am J Pathol. 2010;176:2–13.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mitchell C, Willenbring H. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat Protoc. 2008;3:1167–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Gopinathan L, Ratnacaram CK, Kaldis P. Established and novel Cdk/cyclin complexes regulating the cell cycle and development. Results and problems in cell differentiation. Berlin: Springer Science+Business Media; 2011. p. 365–89.Google Scholar
  7. 7.
    Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene. 2009;28:2925–39.PubMedCrossRefGoogle Scholar
  8. 8.
    Diril MK, Ratnacaram CK, Padmakumar VC, Du T, Wasser M, Coppola V, Tessarollo L, Kaldis P. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci. 2012;109:3826–31.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Albrecht JH, Hu MY, Cerra FB. Distinct patterns of cyclin D1 regulation in models of liver regeneration and human liver. Biochem Biophys Res Commun. 1995;209:648–55.PubMedCrossRefGoogle Scholar
  10. 10.
    Boylan JM, Gruppuso PA. D-type cyclins and G1 progression during liver development in the rat. Biochem Biophys Res Commun. 2005;330:722–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Kurinna S, Barton MC. Cascades of transcription regulation during liver regeneration. Int J Biochem Cell Biol. 2011;43:189–97.PubMedCrossRefGoogle Scholar
  12. 12.
    Ezhevsky SA, Nagahara H, Vocero-Akbani AM, Gius DR, Wei MC, Dowdy SF. Hypo-phosphorylation of the retinoblastoma protein (pRb) by cyclin D:Cdk4/6 complexes results in active pRb. Proc Natl Acad Sci. 1997;94:10699–704.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Rubin SM. Deciphering the retinoblastoma protein phosphorylation code. Trends Biochem Sci. 2013;38:12–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Yao G, Lee TJ, Mori S, Nevins JR, You L. A bistable Rb–E2F switch underlies the restriction point. Nat Cell Biol. 2008;10:476–82.PubMedCrossRefGoogle Scholar
  15. 15.
    Henley SA, Dick FA. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div. 2012;7:10.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81:323–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochimica et Biophysica Acta (BBA)—Rev. Cancer. 2002;1602:73–87.Google Scholar
  18. 18.
    Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell. 2008;14:159–69.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai KM, Ji J, Dudoit S, Ng IO, et al. Gene expression patterns in human liver cancers. Mol Biol Cell. 2002;13:1929–39.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Xu XR, Huang J, Xu ZG, Qian BZ, Zhu ZD, Yan Q, Cai T, Zhang X, Xiao HS, Qu J, et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA. 2001;98:15089–94.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Sawey Eric T, Chanrion M, Cai C, Wu G, Zhang J, Zender L, Zhao A, Busuttil Ronald W, Yee H, Stein L, et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell. 2011;19:347–58.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wang K, Lim HY, Shi S, Lee J, Deng S, Xie T, Zhu Z, Wang Y, Pocalyko D, Yang WJ, et al. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology. 2013;58:706–17.PubMedCrossRefGoogle Scholar
  23. 23.
    Woo HG, Park ES, Thorgeirsson SS, Kim YJ. Exploring genomic profiles of hepatocellular carcinoma. Mol Carcinog. 2011;50:235–43.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Klein EA, Assoian RK. Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci. 2008;121:3853–7.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Xu T, Zhu Y, Xiong Y, Ge Y-Y, Yun J-P, Zhuang S-M. MicroRNA-195 suppresses tumorigenicity and regulates G 1/S transition of human hepatocellular carcinoma cells. Hepatology. 2009;50:113–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang W, Kong G, Zhang J, Wang T, Ye L, Zhang X. MicroRNA-520b inhibits growth of hepatoma cells by targeting MEKK2 and cyclin D1. PLoS ONE. 2012;7:e31450.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Cui J, Zhou X, Liu Y, Tang Z, Romeih M. Wnt signaling in hepatocellular carcinoma: Analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes. J Gastroenterol Hepatol. 2003;18:280–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Joo M, Lee HK, Kang YK. Expression of beta-catenin in Hepatocellular carcinoma in relation to tumor cell proliferation and cyclin D1 expression. J Korean Med Sci. 2003;18:211.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Deane NG, Parker MA, Aramandla R, Diehl L, Lee WJ, Washington MK, Nanney LB, Shyr Y, Beauchamp RD. Hepatocellular carcinoma results from chronic cyclin D1 overexpression in transgenic mice. Cancer Res. 2001;61:5389–95.PubMedGoogle Scholar
  32. 32.
    Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene. 2005;25:2537–45.CrossRefGoogle Scholar
  33. 33.
    Zhang X, Xu HJ, Murakami Y, Sachse R, Yashima K, Hirohashi S, Hu SX, Benedict WF, Sekiya T. Deletions of chromosome 13q, mutations in Retinoblastoma 1, and retinoblastoma protein state in human hepatocellular carcinoma. Cancer Res. 1994;54:4177–82.PubMedGoogle Scholar
  34. 34.
    Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55:4525–30.PubMedGoogle Scholar
  35. 35.
    Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D. 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1:686–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhu Y-Z, Zhu R, Shi L-G, Mao Y, Zheng G-J, Chen Q, Zhu H-G. Hepatitis B virusXprotein promotes hypermethylation of p16INK4A promoter through upregulation of DNA methyltransferases in hepatocarcinogenesis. Exp Mol Pathol. 2010;89:268–75.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhu YZ, Zhu R, Fan J, Pan Q, Li H, Chen Q, Zhu HG. Hepatitis B virus X protein induces hypermethylation of p16 INK4A promoter via DNA methyltransferases in the early stage of HBV-associated hepatocarcinogenesis. J Viral Hepatitis. 2010;17:98–107.CrossRefGoogle Scholar
  38. 38.
    Biden K, Young J, Buttenshaw R, Searle J, Cooksley G, Xu DB, Leggett B. Frequency of mutation and deletion of the tumor suppressor gene CDKN2A (MTS1/p16) in hepatocellular carcinoma from an Australian population. Hepatology. 1997;25:593–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Chaubert P, Gayer R, Zimmermann A, Fontolliet C, Stamm B, Bosman F, Shaw P. Germ-line mutations of the p16INK4(MTS1) gene occur in a subset of patients with hepatocellular carcinoma. Hepatology. 1997;25(6):1376–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Hui A-M, Sun L, Kanai Y, Sakamoto M, Hirohashi S. Reduced p27Kip1 expression in hepatocellular carcinomas. Cancer Lett. 1998;132:67–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Qin L-F, Ng IO-l. Expression of p27KIP1 and p21WAF1/CIP1 in primary hepatocellular carcinoma: clinicopathologic correlation and survival analysis. Hum Pathol. 2001;32:778–85.PubMedCrossRefGoogle Scholar
  42. 42.
    Tannapfel A, Grund D, Katalinic A, Uhlmann D, Köckerling F, Haugwitz U, Wasner M, Hauss J, Engeland K, Wittekind C. Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. Int J Cancer. 2000;89:350–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Fiorentino M, Altimari A, D’Errico A, Cukor B, Barozzi C, Loda M, Grigioni WF. Acquired expression of p27 is a favorable prognostic indicator in patients with hepatocellular carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2000;6:3966–72.Google Scholar
  44. 44.
    Hui AM, Kanai Y, Sakamoto M, Tsuda H, Hirohashi S. Reduced p21WAF1/CIP1 expression and p53 mutation in hepatocellular carcinomas. Hepatology. 1997;25:575–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Nguyen H, Mudryj M, Guadalupe M, Dandekar S. Hepatitis C virus core protein expression leads to biphasic regulation of the p21 cdk inhibitor and modulation of hepatocyte cell cycle. Virology. 2003;312:245–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Yamanaka T, Kodama T, Doi T. Subcellular localization of HCV core protein regulates its ability for p53 activation and p21 suppression. Biochem Biophys Res Commun. 2002;294:528–34.PubMedCrossRefGoogle Scholar
  47. 47.
    Shiu T-Y, Huang S-M, Shih Y-L, Chu H-C, Chang W-K, Hsieh T-Y. Hepatitis C virus core protein down-regulates p21Waf1/Cip1 and inhibits curcumin-induced apoptosis through microRNA-345 targeting in human hepatoma cells. PLoS ONE. 2013;8:e61089.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lei P-P. Expression and hypermethylation of p27 kip1 in hepatocarcinogenesis. World J Gastroenterol. 2005;11:4587.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Matsuda Y. Molecular mechanism underlying the functional loss of cyclindependent kinase inhibitors p16 and p27 in hepatocellular carcinoma. World J Gastroenterol. 2008;14:1734–40.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai L-H, Broudy V, Perlmutter RM, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell. 1996;85:733–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell. 1996;85:721–32.PubMedCrossRefGoogle Scholar
  52. 52.
    Sun D, Ren H, Oertel M, Sellers RS, Zhu L. Loss of p27Kip1 enhances tumor progression in chronic hepatocyte injury-induced liver tumorigenesis with widely ranging effects on Cdk2 or Cdc2 activation. Carcinogenesis. 2007;28:1859–66.PubMedCrossRefGoogle Scholar
  53. 53.
    Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 2008;27:5651–61.PubMedCrossRefGoogle Scholar
  54. 54.
    Alessandrini A, Chiaur DS, Pagano M. Regulation of the cyclin-dependent kinase inhibitor p27 by degradation and phosphorylation. Leukemia. 1997;11:342–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Calvisi DF, Ladu S, Pinna F, Frau M, Tomasi ML, Sini M, Simile MM, Bonelli P, Muroni MR, Seddaiu MA, et al. SKP2 and CKS1 promote degradation of cell cycle regulators and are associated with hepatocellular carcinoma prognosis. Gastroenterology. 2009;137(1816–1826):e1810–1.Google Scholar
  56. 56.
    Chan C-H, Lee S-W, Wang J, Lin H-K. Regulation of Skp2 expression and activity and its role in cancer progression. Sci World J. 2010;10:1001–15.CrossRefGoogle Scholar
  57. 57.
    Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med. 2002;8:1153–60.PubMedCrossRefGoogle Scholar
  58. 58.
    He S, Lu M, Xue W, Wang Y, Zhao Y, Gao S, Ke Q, Liu Y, Li P, Cui X, et al. Phosphorylated p27Kip1 on Thr157 is an important prognosis in human hepatocellular carcinoma in vivo and in vitro. Med Oncol. 2010;28:94–104.PubMedCrossRefGoogle Scholar
  59. 59.
    Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.PubMedCrossRefGoogle Scholar
  60. 60.
    Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729–40.PubMedCrossRefGoogle Scholar
  61. 61.
    Blackburn EH. Structure and function of telomeres. Nature. 1991;350(6319):569–73.PubMedCrossRefGoogle Scholar
  62. 62.
    Cong YS, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev. 2002;66(3):407–25.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Mönch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K. The polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 2007;21(5):525–30.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature. 1999;397(6715):164–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, Inoue H, Wakiyama S, Fujita H, Shirouzu K, Mori M. Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer. 2005;92(9):1754–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tonini T, D’Andrilli G, Fucito A, Gaspa L, Bagella L. Importance of Ezh2 polycomb protein in tumorigenesis process interfering with the pathway of growth suppressive key elements. J Cell Physiol. 2008;214(2):295–300.PubMedCrossRefGoogle Scholar
  67. 67.
    Bartek J, Bartkova J, Lukas J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene. 2007;26(56):7773–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Aliouat-Denis CM, Dendouga N, Van den Wyngaert I, Goehlmann H, Steller U, van de Weyer I, Van Slycken N, Andries L, Kass S, Luyten W, Janicot M, Vialard JE. p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2. Mol Cancer Res. 2005;3(11):627–34.PubMedCrossRefGoogle Scholar
  69. 69.
    Fang L, Igarashi M, Leung J, Sugrue MM, Lee SW, Aaronson SA. p21Waf1/Cip1/Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53. Oncogene. 1999;18(18):2789–97.PubMedCrossRefGoogle Scholar
  70. 70.
    Takubo K, Izumiyama-Shimomura N, Honma N, Sawabe M, Arai T, Kato M, Oshimura M, Nakamura K. Telomere lengths are characteristic in each human individual. Exp Gerontol. 2002;37(4):523–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213(2):286–300.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Utoh R, Tateno C, Yamasaki C, Hiraga N, Kataoka M, Shimada T, Chayama K, Yoshizato K. Susceptibility of chimeric mice with livers repopulated by serially subcultured human hepatocytes to hepatitis B virus. Hepatology. 2008;47(2):435–46.PubMedCrossRefGoogle Scholar
  73. 73.
    Delhaye M, Louis H, Degraef C, Le Moine O, Devière J, Gulbis B, Jacobovitz D, Adler M, Galand P. Relationship between hepatocyte proliferative activity and liver functional reserve in human cirrhosis. Hepatology. 1996;23(5):1003–11.PubMedCrossRefGoogle Scholar
  74. 74.
    Stampfer MR, Yaswen P. Human epithelial cell immortalization as a step in carcinogenesis. Cancer Lett. 2003;194(2):199–208.PubMedCrossRefGoogle Scholar
  75. 75.
    Wege H, Le HT, Chui MS, Liu L, Wu J, Giri R, Malhi H, Sappal BS, Kumaran V, Gupta S, Zern MA. Telomerase reconstitution immortalizes human fetal hepatocytes without disrupting their differentiation potential. Gastroenterology. 2003;124(2):432–44.PubMedCrossRefGoogle Scholar
  76. 76.
    El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.PubMedCrossRefGoogle Scholar
  77. 77.
    Kitada T, Seki S, Kawakita N, Kuroki T, Monna T. Telomere shortening in chronic liver diseases. Biochem Biophys Res Commun. 1995;211(1):33–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Paradis V, Youssef N, Dargère D, Bâ N, Bonvoust F, Deschatrette J, Bedossa P. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol. 2001;32(3):327–32.PubMedCrossRefGoogle Scholar
  79. 79.
    Wiemann SU, Satyanarayana A, Tsahuridu M, Tillmann HL, Zender L, Klempnauer J, Flemming P, Franco S, Blasco MA, Manns MP, Rudolph KL. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 2002;16(9):935–42.PubMedCrossRefGoogle Scholar
  80. 80.
    Plentz RR, Park YN, Lechel A, Kim H, Nellessen F, Langkopf BH, Wilkens L, Destro A, Fiamengo B, Manns MP, Roncalli M, Rudolph KL. Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology. 2007;45(4):968–76.PubMedCrossRefGoogle Scholar
  81. 81.
    Satyanarayana A, Wiemann SU, Buer J, Lauber J, Dittmar KE, Wüstefeld T, Blasco MA, Manns MP, Rudolph KL. Telomere shortening impairs organ regeneration by inhibiting cell cycle re-entry of a subpopulation of cells. EMBO J. 2003;22(15):4003–13.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Lechel A, Satyanarayana A, Ju Z, Plentz RR, Schaetzlein S, Rudolph C, Wilkens L, Wiemann SU, Saretzki G, Malek NP, Manns MP, Buer J, Rudolph KL. The cellular level of telomere dysfunction determines induction of senescence or apoptosis in vivo. EMBO Rep. 2005;6(3):275–81.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Soussi T. p53 alterations in human cancer: more questions than answers. Oncogene. 2007;26(15):2145–56.PubMedCrossRefGoogle Scholar
  84. 84.
    Ozturk M. Genetic aspects of hepatocellular carcinogenesis. Semin Liver Dis. 1999;19(3):235–42.CrossRefPubMedGoogle Scholar
  85. 85.
    Ueda H, Ullrich SJ, Gangemi JD, Kappel CA, Ngo L, Feitelson MA, Jay G. Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet. 1995;9(1):41–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang XW, Gibson MK, Vermeulen W, Yeh H, Forrester K, Stürzbecher HW, Hoeijmakers JH, Harris CC. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res. 1995;55(24):6012–6.PubMedGoogle Scholar
  87. 87.
    Ray RB, Steele R, Meyer K, Ray R. Transcriptional repression of p53 promoter by hepatitis C virus core protein. J Biol Chem. 1997;272(17):10983–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Dharel N, Kato N, Muroyama R, Moriyama M, Shao RX, Kawabe T, Omata M. MDM2 promoter SNP309 is associated with the risk of hepatocellular carcinoma in patients with chronic hepatitis C. Clin Cancer Res. 2006;12(16):4867–71.PubMedCrossRefGoogle Scholar
  89. 89.
    Edamoto Y, Hara A, Biernat W, Terracciano L, Cathomas G, Riehle HM, Matsuda M, Fujii H, Scoazec JY, Ohgaki H. Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. Int J Cancer. 2003;106(3):334–41.PubMedCrossRefGoogle Scholar
  90. 90.
    Shi YZ, Hui AM, Takayama T, Li X, Cui X, Makuuchi M. Reduced p21(WAF1/CIP1) protein expression is predominantly related to altered p53 in hepatocellular carcinomas. Br J Cancer. 2000;83(1):50–5.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Higashitsuji H, Itoh K, Nagao T, Dawson S, Nonoguchi K, Kido T, Mayer RJ, Arii S, Fujita J. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med. 2000;6(1):96–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Liew CT, Li HM, Lo KW, Leow CK, Chan JY, Hin LY, Lau WY, Lai PB, Lim BK, Huang J, Leung WT, Wu S, Lee JC. High frequency of p16INK4A gene alterations in hepatocellular carcinoma. Oncogene. 1999;18(3):789–95.PubMedCrossRefGoogle Scholar
  93. 93.
    Kojima H, Yokosuka O, Imazeki F, Saisho H, Omata M. Telomerase activity and telomere length in hepatocellular carcinoma and chronic liver disease. Gastroenterology. 1997;112:493–500.PubMedCrossRefGoogle Scholar
  94. 94.
    Nakayama J, Tahara H, Tahara E, Saito M, Ito K, Nakamura H, Nakanishi T, Tahara E, Ide T, Ishikawa F. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet. 1998;18:65–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Tahara H, Nakanishi T, Kitamoto M, Nakashio R, Shay JW, Tahara E, Kajiyama G, Ide T. Telomerase activity in human liver tissues: comparison between chronic liver disease and hepatocellular carcinomas. Cancer Res. 1995;55(13):2734–6.PubMedGoogle Scholar
  96. 96.
    Yildiz G, Arslan-Ergul A, Bagislar S, Konu O, Yuzugullu H, Gursoy-Yuzugullu O, Ozturk N, Ozen C, Ozdag H, Erdal E, Karademir S, Sagol O, Mizrak D, Bozkaya H, Ilk HG, Ilk O, Bilen B, Cetin-Atalay R, Akar N, Ozturk M. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis. PLoS ONE. 2013;8(5):e64016.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Fujimoto A, Yasushi Totoki Y, Tetsuo Abe T, Boroevich KA, Hosoda F, Nguyen HH, Masayuki Aoki M, Naoya Hosono N, Kubo M, Fuyuki Miya F, Arai Y, Takahashi H, Shirakihara T, Masao Nagasaki M, Shibuya T, Nakano K, Watanabe-Makino K, Hiroko Tanaka H, Nakamura H, Kusuda J, Ojima H, Shimada K, Okusaka T, Masaki Ueno M, Shigekawa Y, Kawakami Y, Arihiro K, Ohdan H, Gotoh K, Ishikawa O, Ariizumi S, Yamamoto M, Terumasa Yamada T, Chayama K, Tomoo Kosuge T, Hiroki Yamaue H, Kamatani N, Miyano S, Nakagama H, Nakamura Y, Tsunoda T, Shibata T, Nakagawa H. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012;44:760–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Paterlini-Bréchot P, Saigo K, Murakami Y, Chami M, Gozuacik D, Mugnier C, Lagorce D, Bréchot C. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene. 2003;22(25):3911–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Sung WK, Zheng H, Li S, Chen R, Liu X, Li Y, Lee NP, Lee WH, Ariyaratne PN, Tennakoon C, Mulawadi FH, Wong KF, Liu AM, Poon RT, Fan ST, Chan KL, Gong Z, Hu Y, Lin Z, Wang G, Zhang Q, Barber TD, Chou WC, Aggarwa A, Hao K, Zhou W, Zhang C, Hardwick J, Buser C, Xu J, Kan J, Dai H, Mao M, Reinhard C, Wang J, Luk JM. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012;44:765–70.PubMedCrossRefGoogle Scholar
  100. 100.
    Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, Kadel S, Moll I, Nagore E, Hemminki K, Schadendorf D, Kumar R. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339:959–61.PubMedCrossRefGoogle Scholar
  101. 101.
    Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339:957–9.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA, Friedman A, Friedman H, Gallia GL, Giovanella BC, Grollman AP, He TC, He Y, Hruban RH, Jallo GI, Mandahl N, Meeker AK, Mertens F, Netto GJ, Rasheed BA, RigginsGJ Rosenquist TA, Schiffman M, Shih IM, Theodorescu D, Torbenson MS, Velculescu EV, Wang TL, Wentzensen N, Wood LD, Zhang M, McLendon RE, Bigner DD, Kinzler KW, Vogelstein B, Papadopoulos N, Yan H. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA. 2013;110:6021–6.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Liu X, Wu G, Shan Y, Hartmann C, von Deimling A, Xing M. Highly prevalent TERT promoter mutations in bladder cancer and glioblastoma. Cell Cycle. 2013;12:1637–8.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Nonoguchi N, Ohta T, Oh J-E, Kim Y-H, Kleihues P, Ohgaki H. TERT promoter mutations in primary and secondary glioblastomas. Acta Neuropathol. 2013;6(126):931–7.CrossRefGoogle Scholar
  105. 105.
    Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M, Ibrahimpasic T, Ghossein RA, Fagin JA. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab. 2013;98(9):E1562–6.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Cevik D, Yildiz G, Ozturk M. Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations. World J Gastroenterol. 2015;21(1):311–7.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Nault JC, Mallet M, Pilati C, Calderaro J, Bioulac-Sage P, Laurent C, et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun. 2013;4:2218.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Nault JC, Calderaro J, Di Tommaso L, Balabaud C, Zafrani ES, Bioulac-Sage P, Roncalli M, Zucman-Rossi J. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology. 2014;60(6):1983–92.PubMedCrossRefGoogle Scholar
  109. 109.
    Suh SI, Pyun HY, Cho JW, Baek WK, Park JB, Kwon T, Park JW, Suh MH, Carson DA. 5-Aza-2’-deoxycytidine leads to down-regulation of aberrant p16INK4A RNA transcripts and restores the functional retinoblastoma protein pathway in hepatocellular carcinoma cell lines. Cancer Lett. 2000;160(1):81–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007 Feb 8;445(7128):656–60. Epub 2007 Jan 24. Erratum in: Nature. 2011 May 26;473(7348):544.Google Scholar
  111. 111.
    Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci U S A. 2007;104(32):13028–33.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher DW. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004;431(7012):1112–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC, Ozturk M. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology. 2010;52(3):966–74.PubMedCrossRefGoogle Scholar
  114. 114.
    Wag K. Molecular mechanisms of hepatic apoptosis. Cell Death Dis. 2014;16(5):e996.Google Scholar
  115. 115.
    Eguchi A, Wree A, Feldstein AE. Biomarkers of liver cell death. J Hepatol. 2014;60(5):1063–74.PubMedCrossRefGoogle Scholar
  116. 116.
    Fabregat I, Roncero C, Fernández M. Survival and apoptosis: a dysregulated balance in liver cancer. Liver Int. 2007;27(2):155–62.PubMedCrossRefGoogle Scholar
  117. 117.
    Lee YJ, Jang BK. The role of autophagy in hepatocellular carcinoma. Int J Mol Sci. 2015;16(11):26629–43.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Galluzzi L, Kepp O, Kroemer G. RIP kinases initiate programmed necrosis. J Mol Cell Biol. 2009;1:8–10.PubMedCrossRefGoogle Scholar
  119. 119.
    Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N Engl J Med. 2009;361(16):1570–83.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wahl K, Siegemund M, Lehner F, Vondran F, Nüssler A, Länger F, Krech T, Kontermann R, Manns MP, Schulze-Osthoff K, Pfizenmaier K, Bantel H. Increased apoptosis induction in hepatocellular carcinoma by a novel tumor-targeted TRAIL fusion protein combined with bortezomib. Hepatology. 2013;57(2):625–36.PubMedCrossRefGoogle Scholar
  121. 121.
    Fabregat I. Dysregulation of apoptosis in hepatocellular carcinoma cells. World J Gastroenterol. 2009;15(5):513–20.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Okano H, Shiraki K, Inoue H, Kawakita T, Yamanaka T, Deguchi M, Sugimoto K, Sakai T, Ohmori S, Fujikawa K, Murata K, Nakano T. Cellular FLICE/caspase-8-inhibitory protein as a principal regulator of cell death and survival in human hepatocellular carcinoma. Lab Invest. 2003;83(7):1033–43.PubMedCrossRefGoogle Scholar
  123. 123.
    Piras-Straub K, Khairzada K, Trippler M, Baba HA, Kaiser GM, Paul A, Canbay A, Weber F, Gerken G, Herzer K. TRAIL expression levels in human hepatocellular carcinoma have implications for tumor growth, recurrence and survival. Int J Cancer. 2015;136(4):E154–60.PubMedCrossRefGoogle Scholar
  124. 124.
    Liu Z, Cheng M, Cao M. Potential targets for molecular imaging of apoptosis resistance in hepatocellular carcinoma. Biomed Imaging Interv J. 2011;7(1):e5.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Shi YH, Ding WX, Zhou J, He JY, Xu Y, Gambotto AA, Rabinowich H, Fan J, Yin XM. Expression of X-linked inhibitor-of-apoptosis protein in hepatocellular carcinoma promotes metastasis and tumor recurrence. Hepatology. 2008;48(2):497–507.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003;3:807–21.PubMedCrossRefGoogle Scholar
  127. 127.
    Sanchez-Capelo A. Dual role of TGF-beta1 in apoptosis. Cytokine Growth Factor Rev. 2005;16:15–34.PubMedCrossRefGoogle Scholar
  128. 128.
    Crosas-Molist E, Bertran E, Fabregat I. Cross-talk between Tgf-β and NADPH oxidases during liver fibrosis and hepatocarcinogenesis. Curr Pharm Des. 2015.Google Scholar
  129. 129.
    Yang YA, Zhang GM, Feigenbaum L, Zhang YE. Smad3 reduces susceptibility to hepatocarcinoma by sensitizing hepatocytes to apoptosis through downregulation of Bcl-2. Cancer Cell. 2006;9:445–57.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Yang H, Fang F, Chang R, Yang L. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor β receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology. 2013;58(1):205–17.PubMedCrossRefGoogle Scholar
  131. 131.
    Carmona-Cuenca I, Herrera B, Ventura JJ, Roncero C, Fernandez M, Fabregat I. EGF blocks NADPH oxidase activation by TGF-beta in fetal rat hepatocytes, impairing oxidative stress, and cell death. J Cell Physiol. 2006;207:322–30.PubMedCrossRefGoogle Scholar
  132. 132.
    Sancho P, Bertran E, Caja L, Carmona-Cuenca I, Murillo MM, Fabregat I. The inhibition of the epidermal growth factor (EGF) pathway enhances TGF-beta-induced apoptosis in rat hepatoma cells through inducing oxidative stress coincident with a change in the expression pattern of the NADPH oxidases (NOX) isoforms. Biochim Biophys Acta. 2009;1793(2):253–63.PubMedCrossRefGoogle Scholar
  133. 133.
    Luedde T, Schwabe RF. NF-κB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8(2):108–18.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461–6.PubMedCrossRefGoogle Scholar
  135. 135.
    Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.PubMedCrossRefGoogle Scholar
  136. 136.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Stemmler MP. Cadherins in development and cancer. Mol BioSyst. 2008;4:835–50.PubMedCrossRefGoogle Scholar
  138. 138.
    Eckert MA, Lwin TM, Chang AT, Kim J, Danis E, Ohno-Machado L, Yang J. Twist1-induced invadopodia formation pro- motes tumor metastasis. Cancer Cell. 2011;19:372–86.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kuo YC, Su CH, Liu CY, Chen TH, Chen CP, Wang HS. Transforming growth factor-b induces CD44 cleavage that promotes migration of MDA-MB-435 s cells through the up- regulation of membrane type 1-matrix metalloproteinase. Int J Cancer. 2009;124:2568–76.PubMedCrossRefGoogle Scholar
  140. 140.
    Bates RC, Bellovin DI, Brown C, Maynard E, Wu B, Kawakatsu H, Sheppard D, Oettgen P, Mercurio AM. Transcrip- tional activation of integrin b6 during the epithelial–mesen- chymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest. 2005;115:339–47.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Bogaerts E, Heindryckx F, Vandewynckel Y-P, La Van Grunsven, Van Vlierberghe H. The roles of transforming growth factor-β, Wnt, Notch and hypoxia on liver progenitor cells in primary liver tumours. Int J Oncol. 2014;44(4):1015–22.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Brabletz T. To differentiate or not—routes towards metastasis. Nat Rev Cancer. 2012;12:425–36.PubMedCrossRefGoogle Scholar
  143. 143.
    Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with snail and E47 repressors. J Cell Sci. 2003;116:499–511.PubMedCrossRefGoogle Scholar
  145. 145.
    Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.PubMedCrossRefGoogle Scholar
  146. 146.
    Carver EA, Jiang R, Lan Y, Oram KF, Gridley T. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol. 2001;21:8184–8.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F. The two-handed E-box binding zinc finger protein Sip1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7:1267–78.PubMedCrossRefGoogle Scholar
  148. 148.
    Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005;24:2375–85.PubMedCrossRefGoogle Scholar
  149. 149.
    Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.PubMedCrossRefGoogle Scholar
  150. 150.
    Ohkubo T, Ozawa M. The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci. 2004;117:1675–85.PubMedCrossRefGoogle Scholar
  151. 151.
    Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F, Berx G. SIP1/ ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 2005;33:6566–78.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Casas E, Kim J, Bendesky A, Ohno-Machado L, Wolfe CJ, Yang J. Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res. 2011;71:245–54.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.PubMedCrossRefGoogle Scholar
  154. 154.
    Mishra L, Jogunoori W, Johnson L, Tang Y, Katuri V, Shetty K, Mishra B. TGF-beta-signaling is required for ductal progenitor cell survival and epithelial cell differentiation in normal liver. Gastroenterology. 2005;128:A353.Google Scholar
  155. 155.
    Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Drabsch Y, ten Dijke P. TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 2012;31:553–68.PubMedCrossRefGoogle Scholar
  157. 157.
    Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, Zhang SH, et al. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res. 2008;68:4287–95.PubMedCrossRefGoogle Scholar
  158. 158.
    Zulehner G, Mikula M, Schneller D, van Zijl F, Huber H, Sieghart W, Grasl-Kraupp B, et al. Nuclear beta-catenin induces an early liver progenitor phenotype in hepatocellular carcinoma and promotes tumor recurrence. Am J Pathol. 2010;176:472–81.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Fransvea E, Angelotti U, Antonaci S, Giannelli G. Blocking transforming growth factor–beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology. 2008;47:1557–66.PubMedCrossRefGoogle Scholar
  160. 160.
    Giannelli G, Villa E, Lahn M. Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res. 2014;74(7):1890–4.PubMedCrossRefGoogle Scholar
  161. 161.
    MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Pez F, Lopez A, Kim M, Wands JR, Caron de Fromentel C, Merle P. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol. 2013;59(5):1107–17.PubMedCrossRefGoogle Scholar
  163. 163.
    Harada N, Miyoshi H, Murai N, Oshima H, Tamai Y, Oshima M, et al. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Res. 2002;62:1971–7.PubMedGoogle Scholar
  164. 164.
    Stauffer JK, Scarzello AJ, Andersen JB, De Kluyver RL, Back TC, Weiss JM, et al. Coactivation of AKT and beta-catenin in mice rapidly induces formation of lipogenic liver tumors. Cancer Res. 2011;71:2718–27.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical wnt signaling. Cold Spring Harb Perspect Biol. 2010;2(2):a002915.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Fortini ME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009;16:633–47.PubMedCrossRefGoogle Scholar
  167. 167.
    Struhl G, Adachi A. Nuclear access and action of notch in vivo. Cell. 1998;93(1998):649–60.PubMedCrossRefGoogle Scholar
  168. 168.
    Koch U, Radtke F. Notch signaling in solid tumors. Curr Top Dev Biol. 2010;92:411–55.PubMedCrossRefGoogle Scholar
  169. 169.
    Garcia A, Kandel JJ. Notch: a key regulator of tumor angiogenesis and metastasis. Histol Histopathol. 2012;27(2):151–6.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Lobry C, Oh P, Aifantis I. Oncogenic and tumor suppressor functions of Notch in cancer: it’s NOTCH what you think. J Exp Med. 2011;208(10):1931–5.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Qi RZ, An HZ, Yu YZ, Zhang MH, Liu SX, Xu HM, Guo ZH, et al. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res. 2003;63:8323–9.PubMedGoogle Scholar
  172. 172.
    Li B, Zheng YW, Sano Y, Taniguchi H. Evidence for mesenchymal-epithelial transition associated with mouse hepatic stem cell differentiation. PLoS ONE. 2011;6:e17092.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Vestweber D, Kemler R, Ekblom P. Cell-adhesion molecule uvomorulin during kidney development. Dev Biol. 1985;112:213–21.PubMedCrossRefGoogle Scholar
  174. 174.
    Alotaibi H, Basilicata F, Shehwana H, Kosowan T, Schreck I, Braeutigam C, Konu O, Brabletz T. Stemmler MP (2015) Enhancer cooperativity as a novel mechanism underlying the transcriptional regulation of E-cadherin during mesenchymal to epithelial transition. Biochim Biophys Acta. 1849;6:731–42.Google Scholar
  175. 175.
    Stemmler MP, Hecht A, Kemler R. E-cadherin intron 2 contains cis-regulatory elements essential for gene expression. Development. 2005;132:965–76.PubMedCrossRefGoogle Scholar
  176. 176.
    Stemmler MP, Hecht A, Kinzel B, Kemler R. Analysis of regulatory elements of E-cadherin with reporter gene constructs in transgenic mouse embryos. Dev Dyn. 2003;227:238–45.PubMedCrossRefGoogle Scholar
  177. 177.
    Werth M, Walentin K, Aue A, Schonheit J, Wuebken A, Pode-Shakked N, Vilianovitch L, Erdmann B, Dekel B, Bader M, et al. The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex. Development. 2010;137:3835–45.PubMedCrossRefGoogle Scholar
  178. 178.
    Yang JD, Roberts LR. Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol. 2010;7:448–58.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Natsuizaka M, Omura T, Akaike T, Kuwata Y, Yamazaki K, Sato T, Karino Y, Toyota J, Suga T, Asaka M. Clinical features of hepatocelular carcinoma with extrahepatic metastasis. J Gastroenterol Hepatol. 2005;20:1781–7.PubMedCrossRefGoogle Scholar
  180. 180.
    Terada T, Maruo H. Unusual extrahepatic metastatic sites from hepatocellular carcinoma. Int J Clin Exp Pathol. 2013;6(5):816–20.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.PubMedCrossRefGoogle Scholar
  182. 182.
    Clark AG, Vignjevic DM. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol. 2015;36:13–22.PubMedCrossRefGoogle Scholar
  183. 183.
    Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3:362–74.PubMedCrossRefGoogle Scholar
  184. 184.
    Haeger A, Wolf K, Zegers MM, Friedl P. Collective cell migration: guidance principles and hierarchies. Trends Cell Biol. 2015;25:556–66.PubMedCrossRefGoogle Scholar
  185. 185.
    Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM. Cancer invasion: patterns and mechanisms. Acta Naturae. 2015;7:17–28.PubMedPubMedCentralGoogle Scholar
  186. 186.
    van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res. 2011;728:23–34.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144:512–27.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Yang JD, Nakamura I, Roberts LR. The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol. 2011;21(1):35–43.PubMedCrossRefGoogle Scholar
  189. 189.
    Olorunseun O, Ogunwobi CL. Therapeutic and prognostic importance of epithelial–mesenchymal transition in liver cancers: Insights from experimental models. Crit Rev Oncol/Hematol. 2012;83:319–28.CrossRefGoogle Scholar
  190. 190.
    Grise F, Bidaud A, Moreau V. Rho GTPases in hepatocellular carcinoma. Biochim Biophys Acta. 2009;1795:137–51.PubMedGoogle Scholar
  191. 191.
    Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010;16:1009–17.PubMedCrossRefGoogle Scholar
  192. 192.
    Hou J-M, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, Priest LJC, Greystoke A, Zhou C, Morris K, et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol. 2012;30:525–32.PubMedCrossRefGoogle Scholar
  193. 193.
    Friedl P, Wolf K, Lammerding J. Nuclear mechanics during cell migration. Curr Opin Cell Biol. 2011;23(1):55–64.PubMedCrossRefGoogle Scholar
  194. 194.
    Aceto N, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158:1110–1122.Google Scholar
  195. 195.
    Li Y-M, et al. Epithelial–mesenchymal transition markers expressed in circulating tumor cells in hepatocellular carcinoma patients with different stages of disease. Cell Death Dis. 2013;4:e831.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Zhang Y, Shi ZL, Yang X, Yin ZF. Targeting of circulating hepatocellular carcinoma cells to prevent postoperative recurrence and metastasis. World J Gastroenterol. 2014;20:142–7.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Häger A, Alexander S, Friedl P. Cancer invasion and resistance. EJC Suppl. 2013;11:291–3.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Malet-Engra G, Yu W, Oldani A, Rey-Barroso J. Gov Nir S, Scita G, Dupre ́ L: Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion. Curr Biol. 2015;25:242–50.PubMedCrossRefGoogle Scholar
  199. 199.
    Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012;22:396–403.PubMedCrossRefGoogle Scholar
  200. 200.
    Yao D, Dai C, Peng S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res. 2011;9:1608–20.PubMedCrossRefGoogle Scholar
  201. 201.
    Schrader J, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53:1192–205.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Yang C, Zeisberg M, Lively JC, Nyberg P, Afdhal N, Kalluri R. Integrin alpha1beta1 and alpha2beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res. 2003;63:8312–7.PubMedGoogle Scholar
  203. 203.
    Giordano S, Columbano A. Met as a therapeutic target in HCC: facts and hopes. J Hepatol. 2014;60:442–52.PubMedCrossRefGoogle Scholar
  204. 204.
    Korhan P, Erdal E, Kandemiş E, Cokaklı M, Nart D, Yılmaz F, Can A, Atabey N. Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma. PLoS ONE. 2014;9:e105278.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Wilson GK, Tennant DA, McKeating JA. Hypoxia inducible factors in liver disease and hepatocellular carcinoma: current understanding and future directions. J Hepatol. 2014;61(6):1397–406.PubMedCrossRefGoogle Scholar
  206. 206.
    Ghanem I, Riveiro ME, Paradis V, Faivre S, Vázquez de Parga PM, Raymond E. Insights on the CXCL12-CXCR4 axis in hepatocellular carcinoma carcinogenesis. Am J Transl Res. 2014;6:340–52.PubMedPubMedCentralGoogle Scholar
  207. 207.
    Liu H, Pan Z, Li A, Fu S, Lei Y, Sun H, Wu M, Zhou W. Roles of chemokine receptor 4 (CXCR4) and chemokine ligand 12 (CXCL12) in metastasis of hepatocellular carcinoma cells. Cell Mol Immunol. 2008;5:373–8.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Xiang ZL, Zeng ZC, Tang ZY, Fan J, Zhuang PY, Liang Y, Tan YS, He J. Chemokine receptor CXCR4 expression in hepatocellular carcinoma patients increases the risk of bone metastases and poor survival. BMC Cancer. 2009;9:176.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dörken B, Jenuwein T, Schmitt CA. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005;436(7051):660–5.PubMedCrossRefGoogle Scholar
  210. 210.
    Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436(7051):725–30.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguría A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M. Tumour biology: senescence in premalignant tumours. Nature. 2005;436(7051):642.PubMedCrossRefGoogle Scholar
  212. 212.
    Farazi PA, Glickman J, Hormer J, Depinho RA. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res. 2006;66:4766–73.PubMedCrossRefGoogle Scholar
  213. 213.
    Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147:992–2009.PubMedCrossRefGoogle Scholar
  214. 214.
    Joo M, Kang YK, Kim MR, Lee HK, Jang JJ. Cyclin D1 overexpression in hepatocellular carcinoma. Liver. 2001;21(2):89–95.PubMedCrossRefGoogle Scholar
  215. 215.
    Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S. Epithelial to mesenchymal transition markers expressed in circulating tumor cells of early and metastatic breast cancer patients. Breast Cancer Res. 2011;13(R59):12.Google Scholar
  216. 216.
    Kaposi-Novak P, Lee J-S, Gomez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clinic Investig. 2006;116:1582–95.CrossRefGoogle Scholar
  217. 217.
    Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell. 2006;127(2):265–75.PubMedCrossRefGoogle Scholar
  218. 218.
    Lee JS. The mutational landscape of hepatocellular carcinoma. Clin Mol Hepatol. 2015;21(3):220–9.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Luo D, Wang Z, Wu J, Jiang C, Wu J. The role of hypoxia inducible factor-1 in hepatocellular carcinoma. Biomed Res Int. 2014;2014:409272.PubMedPubMedCentralGoogle Scholar
  220. 220.
    Massagué J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14(6):627–44.PubMedGoogle Scholar
  221. 221.
    Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436(7051):720–4.PubMedCrossRefGoogle Scholar
  222. 222.
    Neuzillet C, de Gramont A, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E. Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget. 2014;5:78–94.PubMedGoogle Scholar
  223. 223.
    Ozturk N, Erdal E, Mumcuoglu M, Akcali KC, Yalcin O, Senturk S, Arslan-Ergul A, Gur B, Yulug I, Cetin-Atalay R, Yakicier C, Yagci T, Tez M, Ozturk M. Reprogramming of replicative senescence in hepatocellular carcinoma-derived cells. Proc Natl Acad Sci U S A. 2006;103(7):2178–83.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: globocan 2000. Int J Cancer. 2001;94:153–6.PubMedCrossRefGoogle Scholar
  225. 225.
    Qiao L, Zhang H, Yu J, Francisco R, Dent P, Ebert MP, Rocken C, Farrell G. Constitutive activation of NF- kappaB in human hepatocellular carcinoma: evidence of a cytoprotective role. Hum Gene Ther. 2006;17:280–90.PubMedCrossRefGoogle Scholar
  226. 226.
    Severi T, van Malenstein H, Verslype C, van Pelt JF. Tumor initiation and progression in hepatocellular carcinoma: risk factors, classification, and therapeutic targets. Acta Pharmacol Sin. 2010;31:1409–20.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Shay JW, Roninson IB. Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene. 2004;23(16):2919–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hani Alotaibi
    • 1
  • Nese Atabey
    • 1
  • Kasım Diril
    • 1
  • Esra Erdal
    • 1
  • Mehmet Ozturk
    • 1
  1. 1.Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityBalcovaTurkey

Personalised recommendations