Generalized Frequency Division Multiplexing: A Flexible Multi-Carrier Waveform for 5G



The next generation of wireless networks will face different challenges from new scenarios. The conventional Orthogonal Frequency Division Multiplexing (OFDM) has shown difficulty in fulfilling all demanding requirements. This chapter presents Generalized Frequency Division Multiplexing (GFDM) as a strong waveform candidate for future wireless communications systems which can be combined with several techniques such as precoding or Offset Quadrature Amplitude Modulation (OQAM) and which offers the flexibility to emulate a variety of other popular waveforms as corner cases. This property suggests GFDM as a key technology to allow reconfiguration of the physical layer (PHY), enabling a fast and dynamic evolution of the infrastructure. Additionally, multicarrier transmission theory is covered in terms of Gabor theory. Details on synchronization, channel estimation algorithms and MIMO techniques for GFDM are presented and a description of a proof-of-concept demonstrator shows the suitability of GFDM for future wireless networks.


Orthogonal Frequency Division Multiplex Channel Estimation Carrier Frequency Offset Cyclic Prefix Orthogonal Frequency Division Multiplex Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Pirinen, A brief overview of 5G research activities, in 1st International Conference on 5G for Ubiquitous Connectivity (2014), pp. 17–22Google Scholar
  2. 2.
    N. Michailow, M. Matthé, I. Gaspar, A. Caldevilla, L. Mendes, A. Festag, G. Fettweis, Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Trans. Commun. 62 (9), 3045–3061 (2014)CrossRefGoogle Scholar
  3. 3.
    G. Fettweis, M. Krondorf, S. Bittner, GFDM - generalized frequency division multiplexing, in VTC Spring 2009 - IEEE 69th Vehicular Technology Conference (IEEE, Barcelona, 2009), pp. 1–4CrossRefGoogle Scholar
  4. 4.
    M. Matthé, I.S. Gaspar, G. Fettweis, Short paper: reduced complexity calculation of LMMSE filter coefficients, in Proceedings IEEE 82nd Vehicular Technology Conference, Boston (2015)Google Scholar
  5. 5.
    I.S. Gaspar, N. Michailow, A.N. Caldevilla, E. Ohlmer, S. Krone, G. Fettweis, Low complexity GFDM receiver based on sparse frequency domain processing, in IEEE 77th Vehicular Technology Conference, 2013. VTC Spring (2013)Google Scholar
  6. 6.
    A. Farhang, N. Marchetti, L.E. Doyle, Low complexity modem design for GFDM. IEEE Trans. Signal Process. 99, 1–1 (2015). Available: Google Scholar
  7. 7.
    N. Michailow, I. Gaspar, Generalized frequency division multiplexing: analysis of an alternative multi-carrier technique for next generation cellular systems, in … Systems (ISWCS), … (2012). Available: Google Scholar
  8. 8.
    M. Matthé, L. Mendes, N. Michailow, D. Zhang, G. Fettweis, Widely linear estimation for space-time-coded GFDM in low-latency applications. IEEE Trans. Commun. 63 (11), 4501–4509 (2015)CrossRefGoogle Scholar
  9. 9.
    N. Michailow, L. Mendes, M. Matthé, I. Gaspar, A. Festag, G. Fettweis, Robust WHT-GFDM for the next generation of wireless networks. IEEE Commun. Lett. 19 (1), 106–109 (2015)CrossRefGoogle Scholar
  10. 10.
    H. Bölcskei, Orthogonal frequency division multiplexing based on offset QAM, in Advances in Gabor Analysis, ed. by H. Feichtinger, T. Strohmer. Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, 2003), pp. 321–352Google Scholar
  11. 11.
    I. Gaspar, M. Matthé, N. Michailow, L. Mendes, D. Zhang, G. Fettweis, Frequency-shift Offset-QAM for GFDM. IEEE Commun. Lett. 99, 1–1 (2015)Google Scholar
  12. 12.
    R.W. Chang, Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell Syst. Tech. J. 45 (10), 1775–1796 (1966)CrossRefGoogle Scholar
  13. 13.
    B. Saltzberg, Performance of an efficient parallel data transmission system. IEEE Trans. Commun. Technol. 15 (6), 805–811 (1967)CrossRefGoogle Scholar
  14. 14.
    G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, F. Wiedmann, 5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun. Mag. 52 (2), 97–105 (2014)CrossRefGoogle Scholar
  15. 15.
    P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, A. Ugolini, Modulation formats and waveforms for 5G networks: Who will be the heir of OFDM?: an overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Process. Mag. 31 (6), 80–93 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Lin, P. Siohan, Multi-carrier modulation analysis and WCP-COQAM proposal. EURASIP J. Adv. Signal Process. 2014 (1), 79 (2014). Available:
  17. 17.
    A.M. Tonello, A novel multi-carrier scheme: cyclic block filtered multitone modulation, in 2013 IEEE International Conference on Communications (ICC) (IEEE, Budapest, 2013), pp. 5263–5267CrossRefGoogle Scholar
  18. 18.
    I. Kanaras, A. Chorti, M.R. Rodrigues, I. Darwazeh, Spectrally efficient fdm signals: bandwidth gain at the expense of receiver complexity, in IEEE International Conference on Communications, 2009. ICC’09 (IEEE, Dresden, 2009)Google Scholar
  19. 19.
    M. Matthé, L. Mendes, I. Gaspar, N. Michailow, G. Fettweis, Multi-user time-reversal STC-GFDM for 5G networks. IEEE Trans. Wirel. Commun. (submitted, 2014). Available:
  20. 20.
    K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001)CrossRefzbMATHGoogle Scholar
  21. 21.
    J.J. Benedetto, C. Heil, D.F. Walnut, Gabor systems and the Balian-Low theorem, in Gabor Analysis and Algorithms, ed. by H.G. Feichtinger, T. Strohmer (Birkhäuser, Boston, 1998), Chap. 2, pp. 85–122Google Scholar
  22. 22.
    J. van de Beek, M. Sandell, P. Borjesson, ML Estimation of time and frequency offset in OFDM systems. IEEE Trans. Signal Process. 45 (7), 1800–1805 (1997)CrossRefzbMATHGoogle Scholar
  23. 23.
    T. Schmidl, D. Cox, Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun. 45 (12), 1613–1621 (1997)CrossRefGoogle Scholar
  24. 24.
    H. Minn, M. Zeng, V. Bhargava, On Timing Offset Estimation for OFDM Systems. IEEE Commun. Lett. 4 (7), 242–244 (2000)CrossRefGoogle Scholar
  25. 25.
    A. Awoseyila, C. Kasparis, B.G. Evans, Improved preamble-aided timing estimation for OFDM systems. IEEE Commun. Lett. 12 (11), 825–827 (2008)CrossRefGoogle Scholar
  26. 26.
    I. Gaspar, G. Fettweis, An embedded midamble synchronization approach for generalized frequency division multiplexing, in IEEE Global Communications Conference (GLOBECOM) (2015)Google Scholar
  27. 27.
    I. Gaspar, A. Festag, G. Fettweis, Synchronization using a pseudo-circular preamble for generalized frequency division multiplexing in vehicular communication, in IEEE 82nd Vehicular Technology Conference (VTC Spring) (2015)Google Scholar
  28. 28.
    R.A. Horn, C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1994). Available:
  29. 29.
    N. Al-Dhahir, Single-carrier frequency-domain equalization for space-time block-coded transmissions over frequency-selective fading channels. IEEE Commun. Lett. 5 (7), 304–306 (2001). Available: CrossRefGoogle Scholar
  30. 30.
    C. Studer, H. Bölcskei, Soft-input soft-output single tree-search sphere decoding. IEEE Trans. Inf. Theory 56 (10), 4827–4842 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    D. Wubben, R. Bohnke, V. Kühn, K.-D. Kammeyer, MMSE extension of V-BLAST based on sorted QR decomposition, in 2003 IEEE 58th Vehicular Technology Conference, 2003. VTC 2003-Fall, vol. 1 (2003), pp. 508–512Google Scholar
  32. 32.
    A. Chindapol, J. Ritcey, Design, analysis, and performance evaluation for BICM-ID with square QAM constellations in Rayleigh fading channels. IEEE J. Sel. Areas Commun. 19 (5), 944–957 (2001)CrossRefGoogle Scholar
  33. 33.
    B. Farhang-Boroujeny, H. Zhu, Z. Shi, Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems. IEEE Trans. Signal Process. 54 (5), 1896–1909 (2006)CrossRefGoogle Scholar
  34. 34.
    X. Mao, P. Amini, B. Farhang-Boroujeny, Markov chain Monte Carlo MIMO detection methods for high signal-to-noise ratio regimes, in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), Washington, DC (2007)Google Scholar
  35. 35.
    M. Senst, G. Ascheid, A Rao-Blackwellized Markov chain Monte Carlo algorithm for efficient MIMO detection, in Proc. IEEE Int. Conf. on Commun. (ICC), Tokyo (2011)Google Scholar
  36. 36.
    R. Datta, N. Michailow, M. Lentmaier, G. Fettweis, GFDM interference cancellation for flexible cognitive radio PHY design, in 2012 IEEE Vehicular Technology Conference (VTC Fall) (IEEE, Quebec City, 2012), pp. 1–5CrossRefGoogle Scholar
  37. 37.
    T. Datta, N. Ashok Kumar, A. Chockalingam, B. Rajan, A novel MCMC algorithm for near-optimal detection in large-scale uplink mulituser MIMO systems, in Proc. IEEE Inf. Theory and Appl. Workshop (ITA), San Diego (2012), pp. 69–77Google Scholar
  38. 38.
    D. Zhang, M. Matthé, L. Mendes, G. Fettweis, A Markov Chain Monte Carlo algorithm for near-optimum detection of MIMO-GFDM signals, in Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC), Hong Kong (2015)Google Scholar
  39. 39.
    M. Danneberg, R. Datta, A. Festag, G. Fettweis, Experimental testbed for 5g cognitive radio access in 4g lte cellular systems, in 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM) (2014), pp. 321–324Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Vodafone Chair Mobile Communication SystemsTechnische Universität DresdenDresdenGermany
  2. 2.Instituto Nacional de TelecomunicaçõesSanta Rita do SapucaíBrazil

Personalised recommendations