Skip to main content

Next-Generation High-Efficiency WLAN

  • Chapter
  • First Online:
5G Mobile Communications

Abstract

Currently, the exponential growth of mobile data traffic has put an increasingly heavy burden on the cellular network, and results in severe overload problem. As a cost-effective Internet access solution, WiFi networks consume a major portion of the global Internet traffic, and greatly offload the cellular network. However, with the increasing demands for WLAN and the deployment of carrier-WiFi networks, the number of WiFi public hotspots worldwide is expected to increase dramatically. To face this huge increase in the number of densely deployed WiFi networks, and the massive amount of data to be supported by these networks in indoor and outdoor environments, it is necessary to improve the current WiFi standard and define specifications for high-efficiency wireless local area networks (HEWs). In this chapter, the emerging HEW technology is introduced and discussed, including typical use cases, environments, and potential techniques that can be applied for HEWs. We first give the typical HEW use cases, and analyze the main requirements from these use cases and environments. Then, potential techniques, including enhanced medium access, and spatial frequency reuse, are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Aijaz, H. Aghvami, M. Amani, A survey on mobile data offloading: technical and business perspectives. IEEE Wirel. Commun. 20 (2), 104–112 (2013)

    Article  Google Scholar 

  2. D. Bharadia, E. McMilin, S. Katti, Full duplex radios. Proc. ACM SIGCOMM 43 (4), 375–386 (2013)

    Article  Google Scholar 

  3. G. Bianchi, Performance analysis of the ieee 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18 (3), 535–547 (2000)

    Google Scholar 

  4. X. Chen, H. Zhai, X. Tian, Y. Fang, Supporting QOS in IEEE 802.11 e wireless lans. IEEE Trans. Wirel. Commun. 5 (8), 2217–2227 (2006)

    Google Scholar 

  5. J.I. Choi, M. Jain, K. Srinivasan, P. Levis, S. Katti, Achieving single channel, full duplex wireless communication, in Proceedings of ACM MobiCom (2010)

    Google Scholar 

  6. S. Dimatteo, P. Hui, B. Han, V.O. Li, Cellular traffic offloading through WiFi networks, in Proceedings of the IEEE MASS (Spain, 2011)

    Google Scholar 

  7. Y. Hua, Q. Zhang, Z. Niu, Distributed physical carrier sensing adaptation scheme in cooperative map WLAN, in Proceedings of IEEE GLOBECOM, Hawaii, USA (2009)

    Google Scholar 

  8. M.L. Huang, S. Lee, S.-C. Park, An efficient admission control algorithm for ieee 802.11 e WLAN, in Proceedings of IEEE VTC-Fall (2008)

    Google Scholar 

  9. IEEE, Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications - amendment 8: medium access control (MAC) quality of service enhancements. Technical Report (2005)

    Google Scholar 

  10. IEEE, Especificacion 802.11-2007. Technical Report (2007)

    Google Scholar 

  11. IEEE, Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Technical Report (2012)

    Google Scholar 

  12. IEEE, 802.11-13/1054: HEW evaluation metrics suggestion, Technical Report (2013)

    Google Scholar 

  13. IEEE, IEEE 802.11 study group. Status of IEEE 802.11 HEW study group, Technical Report (2014) [Online]. Available: http://www.ieee802.org/11/Reports/hewupdate.htm

  14. IEEE, 802.11-14/1207: OBSS reuse mechanism which preserves fairness. Technical Report (2014)

    Google Scholar 

  15. IEEE, 802.11-14/0165: 802.11 HEW SG proposed par, Technical Report (2014)

    Google Scholar 

  16. IEEE, 802.11-13/0657: usage models for IEEE 802.11 high efficiency WLAN study group (HEW SG) Liaison with WFA, Technical Report (2014)

    Google Scholar 

  17. IEEE, 802.11-15-0043-01-00ax: in-band full duplex radios and system performance, Technical Report (2014)

    Google Scholar 

  18. IEEE, 802.11-14/0872: a protocol framework for dynamic CCA. Technical Report (2014)

    Google Scholar 

  19. IEEE, 802.11-14/0372: HEW system level simulations on increased spatial reuse. Technical Report (2014)

    Google Scholar 

  20. IEEE, 802.11-14/0637: spatial reuse and coexistence with legacy devices. Technical Report (2014)

    Google Scholar 

  21. IEEE, 802.11-14/0889: performance gains from CCA optimisation. Technical Report (2014)

    Google Scholar 

  22. IEEE, 802.11-14/0846: CCA study in residential scenario. Technical Report (2014)

    Google Scholar 

  23. IEEE, 802.11-13/1012: dynamic sensitivity control. Technical Report (2014)

    Google Scholar 

  24. M. Jain, J.I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, P. Sinha, Practical, real-time, full duplex wireless, in Proceedings of ACM MobiCom (2011)

    Google Scholar 

  25. I. Jamil, L. Cariou, J.-F. Helard, Improving the capacity of future IEEE 802.11 high efficiency WLANs, in Proceedings of IEEE ICT, Lisbon (2014)

    Google Scholar 

  26. T. Kim, S. Lee, S.-C. Park, Call admission control based on adaptive physical rate for EDCA in IEEE 802.11 e WLAN system, in Proceedings of IEEE CCNC (2008), pp. 59–61

    Google Scholar 

  27. J.Y. Kim, O. Mashayekhi, H. Qu, M. Kazadiieva, P. Levis, Janus: a novel MAC protocol for full duplex radio. Stanford CS Tech reports in http://hci.stanford.edu/cstr/ CSTR 2 (7), 23 (2013)

  28. K. Lee, J. Lee, Y. Yi, I. Rhee, S. Chong, Mobile data offloading: how much can WiFi deliver? IEEE/ACM Trans. Netw. 21 (2), 536–550 (2013)

    Article  Google Scholar 

  29. P. Liu, Z. Tao, S. Narayanan, T. Korakis, S.S. Panwar, Coopmac: a cooperative MAC for wireless lans. IEEE J. Sel. Areas Commun. 25 (2), 340–354 (2007)

    Article  Google Scholar 

  30. K. Medepalli, F. Tobagi, D. Famolari, T. Kodama et al., On optimization of csma/ca based wireless lans: Part ii-mitigating efficiency loss, in Proceedings of IEEE ICC (2006)

    Google Scholar 

  31. K. Murakami, T. Ito, S. Ishihara, Improving the spatial reuse of IEEE 802.11 WLAN by adaptive carrier sense threshold of access points based on node positions, in Proceedings of IEEE ICMU, Hakodate City (2015)

    Google Scholar 

  32. T. Nakahira, K. Ishihara, Y. Asai, Y. Takatori, R. Kudo, M. Mizoguchi, Centralized control of carrier sense threshold and channel bandwidth in high-density WLANs, in Proceedings of IEEE APMC, Sendai, Japan (2014)

    Google Scholar 

  33. A. Sahai, G. Patel, A. Sabharwal, Pushing the limits of full-duplex: design and real-time implementation (2011). arXiv:1107.0607

    Google Scholar 

  34. K.-P. Shih, C.-M. Chou, M.-Y. Lu, S.-M. Chen, A distributed spatial reuse (DSR) MAC protocol for IEEE 802.11 ad-hoc wireless LANs, in Proceedings of IEEE ISCC, Cartagena (2005)

    Google Scholar 

  35. S. Singh, H. Dhillon, J. Andrews, Offloading in heterogeneous networks: modeling, analysis, and design insights. IEEE Trans. Wirel. Commun. 12 (5), 2484–2497 (2012)

    Article  Google Scholar 

  36. C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas, S. Fletcher, E. Hepsaydir, Cellular architecture and key technologies for 5g wireless communication networks. IEEE Commun. Mag. 52 (2), 122–130 (2014)

    Article  Google Scholar 

  37. Y. Wu, Y. Sun, Y. Ji, J. Mao, Y. Liu, A joint channel allocation and power control scheme for interference mitigation in high-density WLANs, in Proceedings of IEEE ICCT, Guilin (2013)

    Google Scholar 

  38. A.E. Xhafa, A. Batra, A. Zaks, On the coexistence of overlapping BSSs in WLANs, in Proceedings of IEEE VTC, Baltimore (2007)

    Google Scholar 

  39. Z. Zhou, Y. Zhu, Z. Niu, J. Zhu, Joint tuning of physical carrier sensing, power and rate in high-density WLAN, in Proceedings of IEEE APCC, Bangkok (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheng, N., Shen, X.(. (2017). Next-Generation High-Efficiency WLAN. In: Xiang, W., Zheng, K., Shen, X. (eds) 5G Mobile Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-34208-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34208-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34206-1

  • Online ISBN: 978-3-319-34208-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics