A Conceptual 5G Vehicular Networking Architecture



This chapter presents a thorough investigation on current vehicular networking architectures (access technologies and overlay networks) and their (r)evolution towards the 5G era. The main driving force behind vehicular networking is to increase safety, with several other applications exploiting this ecosystem for traffic efficiency and infotainment provision. The most prominent existing candidates for vehicular networking are based on dedicated short range communications (DSRC) and cellular (4G) communications. In addition, the maturity of cloud computing has accommodated the invasion of vehicular space with cloud-based services. Nevertheless, current architectures can not meet the latency requirements of Intelligent Transport Systems (ITS) applications in highly congested and mobile environments. The future trend of autonomous driving pushes current networking architectures further to their limits with hard real-time requirements. Vehicular networks in 5G have to address five major challenges that affect current architectures: congestion, mobility management, backhaul networking, air interface and security. As networking transforms from simple connectivity provision, to service and content provision, fog computing approaches with caching and pre-fetching improve significantly the performance of the networks. The cloudification of network resources through software defined networking (SDN)/network function virtualization (NFV) principles, is another promising enabler for efficient vehicular networking in 5G. Finally, new wireless access mechanisms combined with current DSRC and 4G will enable to bring the vehicles in the cloud.


Vehicular Networking Software Define Networking Intelligent Transportation System Stream Control Transmission Protocol Dedicate Short Range Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Jerry Foster, 5G systems architect at 5GIC, for sharing his wisdom during the conceptual 5G architecture definition.


  1. 1.
    S. Abdelhamid, H. Hassanein, G. Takahara, Vehicle as a resource (VaaR). IEEE Netw. 29 (1), 12–17 (2015). doi: 10.1109/MNET.2015.7018198 CrossRefGoogle Scholar
  2. 2.
    S. Andreev, M. Gerasimenko, O. Galinina, Y. Koucheryavy, N. Himayat, S.P. Yeh, S. Talwar, Intelligent access network selection in converged multi-radio heterogeneous networks. IEEE Wirel. Commun. 21 (6), 86–96 (2014). doi: 10.1109/MWC.2014.7000976 CrossRefGoogle Scholar
  3. 3.
    R. Baldessari, A. Festag, J. Abeille, Nemo meets vanet: a deployability analysis of network mobility in vehicular communication, in 7th International Conference on ITS Telecommunications, 2007. ITST ’07 (2007), pp. 1–6. doi: 10.1109/ITST.2007.4295897
  4. 4.
    S. Bayless, A. Guan, Connected Vehicle Technical Insigts - Vehicle Applications and Wireless Interoperability. Technology Scan Series 2011–2015 (ITS America, Washington, DC, 2015)Google Scholar
  5. 5.
    F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the internet of things, in Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC ’12 (2012), pp. 13–16. doi: 10.1145/2342509.2342513
  6. 6.
    J. Calabuig, J. Monserrat, D. Gozalvez, O. Klemp, Safety on the roads: LTE alternatives for sending ITS messages. IEEE Veh. Technol. Mag. 9 (4), 61–70 (2014). doi: 10.1109/MVT.2014.2362272 CrossRefGoogle Scholar
  7. 7.
    G. Calandriello, P. Papadimitratos, J.P. Hubaux, A. Lioy, On the performance of secure vehicular communication systems. IEEE Trans. Dependable Secure Comput. 8 (6), 898–912 (2011). doi: 10.1109/TDSC.2010.58 CrossRefGoogle Scholar
  8. 8.
    M. Chen, D.O. Mau, Y. T. Zhang, T. Taleb, V.C. Leung, VENDNET: VEhicular Named Data NETwork. Veh. Commun. 1 (4), 208–213 (2014). doi: 10.1016/j.vehcom.2014.002 CrossRefGoogle Scholar
  9. 9.
    X. Cheng, X. Hu, L.L. Yang, I. Husain, K. Inoue, P. Krein, R. Lefevre, Y. Li, H. Nishi, J. Taiber, F.Y. Wang, Y. Zha, W. Gao, Z. Li, Electrified vehicles and the smart grid: the ITS perspective. IEEE Trans. Intell. Transp. Syst. 15 (4), 1388–1404 (2014). doi: 10.1109/TITS.2014.2332472 CrossRefGoogle Scholar
  10. 10.
    N. Cheng, N. Lu, N. X.S. Zhang, Shen, J.W. Mark, Vehicular wifi offloading: challenges and solutions. Veh. Commun. 1 (1), 13–21 (2014)Google Scholar
  11. 11.
    X. Cheng, L. Yang, X. Shen, D2D for intelligent transportation systems: a feasibility study. IEEE Trans. Intell. Transp. Syst. PP, 1–10 (2015). doi: 10.1109/TITS.2014.2377074
  12. 12.
    Cisco Systems Inc., The internet of things - how the next evolution of the internet is changing everything. White paper (2011)Google Scholar
  13. 13.
    Cisco Systems Inc., Cisco visual networking index: global mobile data traffic forecast update, 2012–2017. Technical Report (2013)Google Scholar
  14. 14.
    Cisco Systems Inc., Fog computing. Cisco Technology Radar (2014)Google Scholar
  15. 15.
    CoCar Consortium, CoCarX Coperative Cars eXtended ITS services and communication architecture. Deliverable D3 (2011)Google Scholar
  16. 16.
    COST IC 1004, Scientific challenges towards 5G mobile communications. White paper (2013)Google Scholar
  17. 17.
    F. Dressler, P. Handle, C. Sommer, Towards a vehicular cloud - using parked vehicles as a temporary network and storage infrastructure, in International Workshop on Wireless and Mobile Technologies for Smart Cities, WiMobCity ’14 (2014), pp. 11–18. doi: 10.1145/2633661.2633671
  18. 18.
    X. Duan, X. Wang, Authentication handover and privacy protection in 5g hetnets using software-defined networking. IEEE Commun. Mag. 53 (4), 28–35 (2015). doi: 10.1109/MCOM.2015.7081072 CrossRefGoogle Scholar
  19. 19.
    T. ElBatt, S.K. Goel, G. Holland, H. Krishnan, J. Parikh, Cooperative collision warning using dedicated short range wireless communications, in Proceedings of the 3rd International Workshop on Vehicular Ad Hoc Networks (2006), pp. 1–9. doi: 10.1145/1161064.1161066
  20. 20.
    EN 302 665, Intelligent Transport Systems (ITS) - Communications Architecture. European standard, ETSI (2010)Google Scholar
  21. 21.
    ES 202 663, Intelligent Transport Systems (ITS) - European profile standard for the physical and medium access control layer of Intelligent Transport Systems operating in the 5GHz frequency band. European standard, ETSI (2009)Google Scholar
  22. 22.
    D. Farinacci, V. Fuller, D. Meyer, D. Lewis, The Locator/ID Separation Protocol (LISP). RFC 6830 (Experimental) (2013).
  23. 23.
    G. Fettweis, S. Alamouti, 5G: personal mobile internet beyond what cellular did to telephony. IEEE Commun. Mag. 52 (2), 140–145 (2014). doi: 10.1109/MCOM.2014.6736754 CrossRefGoogle Scholar
  24. 24.
    Fierce Wireless, 3G/4G wireless network latency: comparing Verizon, AT&T, Sprint and T-Mobile in February 2014 (2014). Google Scholar
  25. 25.
    D. Filev, J. Lu, D. Hrovat, Future mobility: integrated vehicle control with cloud computing. ASME Dyn. Syst. Control Mag. 1 (1), 18–24 (2013)Google Scholar
  26. 26.
    FlexRay Consortium, Flexray communications system-protocol specification. Technical Report (2005)Google Scholar
  27. 27.
    S. Gaudin, Ford uses Microsoft cloud to seamlessly update cars (2015), Accessed: 15 May 2015Google Scholar
  28. 28.
    M. Gerla, E.K. Lee, G. Pau, U. Lee, Internet of vehicles: from intelligent grid to autonomous cars and vehicular clouds, in 2014 IEEE World Forum on Internet of Things (WF-IoT) (2014), pp. 241–246. doi: 10.1109/WF-IoT.2014.6803166
  29. 29.
    G. Grassi, D. Pesavento, G. Pau, L. Zhang, S. Fdida, Navigo: interest forwarding by geolocations in vehicular named data networking. ArXiv e-prints (2015)Google Scholar
  30. 30.
    L. Gu, D. Zeng, S. Guo, Vehicular cloud computing: a survey, in 2013 IEEE Globecom Workshops (GC Wkshps) (2013), pp. 403–407. doi: 10.1109/GLOCOMW.2013.6825021
  31. 31.
    H. Hawilo, A. Shami, M. Mirahmadi, R. Asal, NFV: state of the art, challenges, and implementation in next generation mobile networks (vepc). IEEE Netw. 28 (6), 18–26 (2014). doi: 10.1109/MNET.2014.6963800
  32. 32.
    IEEE, IEEE Guide for Wireless Access in Vehicular Environments (WAVE) - Architecture. IEEE Std. 1609.0-2013 (2014), pp. 1–78. doi: 10.1109/IEEESTD.2014.6755433
  33. 33.
    A. Imran, A. Zoha, Challenges in 5g: how to empower son with big data for enabling 5g. IEEE Netw., 28 (6), 27–33 (2014). doi: 10.1109/MNET.2014.6963801 CrossRefGoogle Scholar
  34. 34.
    V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, R.L. Braynard, Networking named content, in Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, CoNEXT ’09 (2009), pp. 1–12. doi: 10.1145/1658939.1658941
  35. 35.
    A. Jain, H.S. Koppula, B. Raghavan, A. Saxena, Know before you do: anticipating maneuvers via learning temporal driving models. arXiv preprint arXiv:1504.02789 (2015)Google Scholar
  36. 36.
    W. Jones, BMW fixes software flaw that would’ve let hackers unlock doors. IEEE Spectrum (2015).
  37. 37.
    K. Kanai, T. Muto, H. Kisara, J. Katto, T. Tsuda, W. Kameyama, Y.J. Park, T. Sato, Proactive content caching utilizing transportation systems and its evaluation by field experiment, in 2014 IEEE Global Communications Conference (GLOBECOM) (2014), pp. 1382–1387. doi: 10.1109/GLOCOM.2014.7037001
  38. 38.
    K. Katsaros, R. Kernchen, M. Dianati, D. Rieck, C. Zinoviou, Application of vehicular communications for improving the efficiency of traffic in urban areas. Wirel. Commun. Mob. Comput. 11 (12), 1657–1667 (2011)Google Scholar
  39. 39.
    K. Katsaros, M. Dianati, L. Le, Effective implementation of location services for VANETs in hybrid network infrastructures, in International Conference on Communications (ICC) Workshops (2013), pp. 521–525. doi: 10.1109/ICCW.2013.6649289
  40. 40.
    K. Katsaros, M. Dianati, R. Tafazolli, G. Xiaolong, End-to-End delay bound analysis for location-based routing in hybrid vehicular networks. IEEE Trans. Veh. Technol. PP (99), 1–1 (2015). doi:  10.1109/TVT.2015.2482362
  41. 41.
    T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, I. Stoica, A data-oriented (and beyond) network architecture. SIGCOMM Comput. Commun. Rev. 37 (4), 181–192 (2007). doi: 10.1145/1282427.1282402 CrossRefGoogle Scholar
  42. 42.
    KPMG, Connected and autonomous vehicles—the uk economic opportunity. Technical Report (2015)Google Scholar
  43. 43.
    J.H. Lee, T. Ernst, N. Chilamkurti, Performance analysis of PMIPv6-based network mobility for intelligent transportation systems. IEEE Trans. Veh. Technol. 61 (1), 74–85 (2012). doi: 10.1109/TVT.2011.2157949 CrossRefGoogle Scholar
  44. 44.
    E. Lee, E.K. Lee, M. Gerla, S. Oh, Vehicular cloud networking: architecture and design principles. IEEE Commun. Mag. 52 (2), 148–155 (2014). doi: 10.1109/MCOM.2014.6736756 CrossRefGoogle Scholar
  45. 45.
    P. Matzakos, J. Härri, B. Villeforceix, C. Bonnet, An IPv6 architecture for cloud-to-vehicle smart mobility services over heterogeneous vehicular networks, in 3rd International Conference on Connected Vehicles & Expo ICCVE 2014 (2014)Google Scholar
  46. 46.
    C. McCarthy, K. Harnett, A. Carter, Characterization of potential security threats in modern automobiles - a composite modeling approach. DOT HS 812 074, NHTSA (2014)Google Scholar
  47. 47.
    METIS Consortium, Proposed solutions for new radio access. Deliverable D2.4 (2015)Google Scholar
  48. 48.
    Z.H. Mir, F. Filali, LTE and IEEE 802.11p for vehicular networking: a performance evaluation. EURASIP J. Wirel. Commun. Netw. 2014 (89) (2014). doi: 10.1186/1687-1499-2014-89
  49. 49.
    A. Mukherjee, S. Fakoorian, J. Huang, A. Swindlehurst, Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun. Surv. Tutorials 16 (3), 1550–1573 (2014). doi: 10.1109/SURV.2014.012314.00178
  50. 50.
    NHTSA, Preliminary statement of policy concerning automated vehicles (2013)Google Scholar
  51. 51.
    Nokia, 5g radio access system design aspects. White paper (2015)Google Scholar
  52. 52.
    N. Omheni, F. Zarai, M.S. Obaidat, K.F. Hsiao, L. Kamoun, A novel media independent handover-based approach for vertical handover over heterogeneous wireless networks. Int. J. Commun. Syst. 27 (5), 811–824 (2014). doi: 10.1002/dac.2628 CrossRefGoogle Scholar
  53. 53.
    B. Peng, T. Peng, Z. Liu, Y. Yang, C. Hu, Cluster-based multicast transmission for device-to-device (d2d) communication, in 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), pp. 1–5 (2013). doi: 10.1109/VTCFall.2013.6692134
  54. 54.
    J. Petit, Z. Mammeri, Authentication and consensus overhead in vehicular ad hoc networks. Telecommun. Syst. 52 (4), 2699–2712 (2013). doi: 10.1007/s11235-011-9589-y CrossRefGoogle Scholar
  55. 55.
    M. Phan, R. Rembarz, S. Sories, A capacity analysis for the transmission of event and cooperative awareness messages in lte networks, in ITS World Congress (2011)Google Scholar
  56. 56.
    J. Qiao, X. Shen, J. Mark, Q. Shen, Y. He, L. Lei, Enabling device-to-device communications in millimeter-wave 5g cellular networks. IEEE Commun. Mag. 53 (1), 209–215 (2015). doi: 10.1109/MCOM.2015.7010536 CrossRefGoogle Scholar
  57. 57.
    G. Remy, S. Senouci, F. Jan, Y. Gourhant, Lte4v2x: Lte for a centralized vanet organization, in 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011), pp. 1–6 (2011). doi: 10.1109/GLOCOM.2011.6133884
  58. 58.
    N. Ristanovic, P. Papadimitratos, G. Theodorakopoulos, J.P. Hubaux, J.Y. Le Boudec, Adaptive message authentication for multi-hop networks, in 2011 Eighth International Conference on Wireless On-Demand Network Systems and Services (WONS) (2011), pp. 96–103. doi: 10.1109/WONS.2011.5720206
  59. 59.
    P.E. Ross, Cars that talk need wireless that works. IEEE Spectrum (2014).
  60. 60.
    S. Ruehrup, P. Fuxjaeger, D. Smely, TCP-like congestion control for broadcast channel access in VANETs, in International Conference on Connected Vehicles and Expo (ICCVE) (2014)Google Scholar
  61. 61.
    S. Ryu, K.J. Park, J.W. Choi, Enhanced fast handover for network mobility in intelligent transportation systems. IEEE Trans. Veh. Technol. 63 (1), 357–371 (2014). doi: 10.1109/TVT.2013.2272059
  62. 62.
    M. Salahuddin, A. Al-Fuqaha, M. Guizani, Software-defined networking for rsu clouds in support of the internet of vehicles. IEEE Internet Things J. 2 (2), 133–144 (2015). doi: 10.1109/JIOT.2014.2368356
  63. 63.
    R. Sivaraj, A. Gopalakrishna, M. Chandra, P. Balamuralidhar, Qos-enabled group communication in integrated vanet-lte heterogeneous wireless networks, in 2011 IEEE 7th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (2011), pp. 17–24. doi: 10.1109/WiMOB.2011.6085417
  64. 64.
    F. Soldo, C. Casetti, C. Chiasserini, P. Chaparro, Video streaming distribution in vanets. IEEE Trans. Parallel Distrib. Syst. 22 (7), 1085–1091 (2011). doi: 10.1109/TPDS.2010.173 CrossRefGoogle Scholar
  65. 65.
    STOKE, Latency considerations in LTE, Implications to security gateway. White Paper (2014)Google Scholar
  66. 66.
    TR 102 638, Intelligent Transport Systems (ITS) - Vehicular communications - Vehicular communications; basic set of applications; definitions. Technical Report, ETSI (2009)Google Scholar
  67. 67.
    TR 102 692, Intelligent Transport Systems (ITS) - Framework for public mobile networks in Cooperative ITS (C-ITS). Technical report, ETSI (2012)Google Scholar
  68. 68.
    TS 102 636-6-1, Intelligent Transport Systems (ITS) - Vehicular communications - GeoNetworking - Part 6: internet integration - Sub-part 1: Transmission of IPv6 packets over GeoNetworking protocols. Technical specification, ETSI (2011)Google Scholar
  69. 69.
    TS 102 687, Intelligent Transport Systems - Decentralized congestion control mechanisms for intelligent transport systems operating in the 5GHz range; access layer part. Technical specification, ETSI (2011)Google Scholar
  70. 70.
    TS 102 940, Intelligent Transport Systems - Security - ITS communications security architecture and security management. Technical specification, ETSI (2012)Google Scholar
  71. 71.
    L. Wang, R. Wakikawa, R. Kuntz, R. Vuyyuru, L. Zhang, Data naming in vehicle-to-vehicle communications, in 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (2012), pp. 328–333. doi: 10.1109/INFCOMW.2012.6193515
  72. 72.
    X. Wang, M. Chen, T. Taleb, A. Ksentini, V. Leung, Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun. Mag. 52 (2), 131–139 (2014). doi: 10.1109/MCOM.2014.6736753 CrossRefGoogle Scholar
  73. 73.
    M. Whaiduzzaman, M. Sookhak, A. Gani, R. Buyya, A survey on vehicular cloud computing. J. Netw. Comput. Appl. 40, 325–344 (2014). doi: 10.1016/j.jnca.2013.08.004 CrossRefGoogle Scholar
  74. 74.
    X. Wu, S. Subramanian, R. Guha, R.G. White, J. Li, K.W. Lu, A. Bucceri, T. Zhang, Vehicular communications using DSRC: challenges, enhancements, and evolution. IEEE J. Sel. Areas Commun. 31 (9), 399–408 (2013). doi: 10.1109/JSAC.2013.SUP.0513036 CrossRefGoogle Scholar
  75. 75.
    Z. Yan, S. Zeadally, Y.J. Park, A novel vehicular information network architecture based on named data networking (ndn). IEEE Internet Things J. 1 (6), 525–532 (2014). doi: 10.1109/JIOT.2014.2354294 CrossRefGoogle Scholar
  76. 76.
    V. Yazici, U. Kozat, M.O. Sunay, A new control plane for 5g network architecture with a case study on unified handoff, mobility, and routing management. IEEE Commun. Mag. 52 (11), 76–85 (2014). doi: 10.1109/MCOM.2014.6957146 CrossRefGoogle Scholar
  77. 77.
    A. Yegin, J. Park, K. Kweon, J. Lee, Terminal-centric distribution and orchestration of ip mobility for 5g networks. IEEE Commun. Mag. 52 (11), 86–92 (2014). doi: 10.1109/MCOM.2014.6957147 CrossRefGoogle Scholar
  78. 78.
    X. Yin, X. Ma, K. Trivedi, A. Vinel, Performance and reliability evaluation of BSM broadcasting in DSRC with multi-channel schemes. IEEE Trans. Commun. 63 (12), 3101–3113 (2014). doi: 10.1109/TC.2013.175 MathSciNetGoogle Scholar
  79. 79.
    L. Zeng, Y. Zhu, 3g-assisted routing in vehicular networks, in 2012 IEEE Sensors (2012), pp. 1–4. doi: 10.1109/ICSENS.2012.6411481
  80. 80.
    L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley, C. Papadopoulos, L. Wang, B. Zhang, Named data networking. SIGCOMM Comput. Commun. Rev. 44 (3), 66–73 (2014). doi: 10.1145/2656877.2656887
  81. 81.
    N. Zhang, N. Cheng, A. T. Gamage, K. Zhang, J.W. Mark, X.S. Shen, Cloud assisted HetNets toward 5G wireless networks. IEEE Commun. Mag. 53 (6), 59–65 (2015).  10.1109/MCOM.2015.7120046 CrossRefGoogle Scholar
  82. 82.
    Q. Zhao, Y. Zhu, C. Chen, H. Zhu, B. Li, When 3g meets vanet: 3g-assisted data delivery in vanets. IEEE Sensors J. 13 (10), 3575–3584 (2013). doi: 10.1109/JSEN.2013.2265304 CrossRefGoogle Scholar
  83. 83.
    K. Zhu, D. Niyato, P. Wang, E. Hossain, D.I. Kim, Mobility and handoff management in vehicular networks: a survey. Wirel. Commun. Mob. Comput. 11 (4), 459–476 (2011). doi: 10.1002/wcm.853 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute for Communication SystemsUniversity of SurreyGuildfordUK

Personalised recommendations