Skip to main content

Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health

  • Chapter
  • First Online:
Book cover Modified Nucleic Acids in Biology and Medicine

Abstract

Epitranscriptomics is the study of global modification patterns to both coding and noncoding RNA. Understanding the epitranscriptomic profile of disease states or individual patients is imperative to understanding human health and molecular disease pathology. Modifications have long been established as important determinants of tRNA stability, dynamics, and ribosome binding and of maintenance of the translational reading frame. These modifications also serve as biomarkers for several human diseases, including type 2 diabetes, cardiac dysfunction, intellectual disability, and skin, breast, and colorectal cancers. Of particular note, several mitochondrial disorders trace their molecular pathogenesis to deficiencies in specific tRNA modifications. Pathology can also be attributed to mutations affecting protein recognition of tRNA substrates. However, protein recognition of RNA modification is at present an underdeveloped field and the subject of increasing attention. Epitranscriptomic profiling will be readily achievable with new advances in the detection of RNA modifications by peptides and mass spectrometry at the attomole level. These technologies will allow for single-cell analysis of modifications and will serve as a platform for increased sensitivity for biomarker identification. Thus, RNA modifications are a real-time code to RNA structure and function that has yet to be deciphered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott JA, Francklyn CS, Robey-Bond SM (2014) Transfer RNA and human disease. Front Genet 5:158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adachi H, Yu YT (2014) Insight into the mechanisms and functions of spliceosomal snRNA pseudouridylation. World J Biol Chem 5:398–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Addepalli B, Limbach PA (2011) Mass spectrometry-based quantification of pseudouridine in RNA. J Am Soc Mass Spectrom 22:1363–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agris PF (1996) The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol 53:79–129

    Article  CAS  PubMed  Google Scholar 

  • Agris PF (2004) Decoding the genome: a modified view. Nucleic Acids Res 32:223–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agris PF (2008) Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications. EMBO Rep 9:629–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agris PF (2015) The importance of being modified: an unrealized code to RNA structure and function. RNA 21:552–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agris PF, Playl T, Goldman L et al (1983) Processing of tRNA is accomplished by a high-molecular-weight enzyme complex. Recent Results Cancer Res 84:237–254

    CAS  PubMed  Google Scholar 

  • Agris PF, Sierzputowska-Gracz H, Smith C (1986) Transfer RNA contains sites of localized positive charge: carbon NMR studies of [13C]methyl-enriched Escherichia coli and yeast tRNAPhe. Biochemistry 25:5126–5131

    Article  CAS  PubMed  Google Scholar 

  • Agris PF, Marchbank MT, Newman W et al (1999) Experimental models of protein-RNA interaction: isolation and analyses of tRNA(Phe) and U1 snRNA-binding peptides from bacteriophage display libraries. J Protein Chem 18:425–435

    Article  CAS  PubMed  Google Scholar 

  • Agris PF, Vendeix FA, Graham WD (2007) tRNA’s wobble decoding of the genome: 40 years of modification. J Mol Biol 366:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ahmed AU, Fisher PR (2009) Import of nuclear-encoded mitochondrial proteins: a cotranslational perspective. Int Rev Cell Mol Biol 273:49–68

    Article  CAS  PubMed  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  • Anderson S, de Bruijn MH, Coulson AR et al (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Article  CAS  PubMed  Google Scholar 

  • Andersson DI, Bohman K, Isaksson LA et al (1982) Translation rates and misreading characteristics of rpsD mutants in Escherichia coli. Mol Gen Genet 187:467–472

    Article  CAS  PubMed  Google Scholar 

  • Anko ML, Neugebauer KM (2012) RNA-protein interactions in vivo: global gets specific. Trends Biochem Sci 37:255–262

    Article  PubMed  CAS  Google Scholar 

  • Arragain S, Handelman SK, Forouhar F et al (2010) Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N-6-threonylcarbamoyladenosine in tRNA. J Biol Chem 285:28425–28433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf SS, Sochacka E, Cain R et al (1999) Single atom modification (O→S) of tRNA confers ribosome binding. RNA 5:188–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf SS, Guenther RH, Ansari G et al (2000) Role of modified nucleosides of yeast tRNA(Phe) in ribosomal binding. Cell Biochem Biophys 33:241–252

    Article  CAS  PubMed  Google Scholar 

  • Ashworth J, Havranek JJ, Duarte CM et al (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441:656–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athanassiou Z, Patora K, Dias RL et al (2007) Structure-guided peptidomimetic design leads to nanomolar beta-hairpin inhibitors of the Tat-TAR interaction of bovine immunodeficiency virus. Biochemistry 46:741–751

    Article  CAS  PubMed  Google Scholar 

  • Atta M, Arragain S, Fontecave M et al (2012) The methylthiolation reaction mediated by the Radical-SAM enzymes. Biochim Biophys Acta 1824:1223–1230

    Article  CAS  PubMed  Google Scholar 

  • Auffinger P, Westhof E (1998) Effects of pseudouridylation on tRNA hydration and dynamics: a theoretical approach. In: Grosjean H, Benne R (eds) Modification and Editing of RNA. ASM Press, Washington, DC, pp 103–112

    Chapter  Google Scholar 

  • Auld DS, Schimmel P (1995) Switching recognition of two tRNA synthetases with an amino acid swap in a designed peptide. Science 267:994–1996

    Article  Google Scholar 

  • Austin RJ, Xia T, Ren J et al (2002) Designed arginine-rich RNA-binding peptides with picomolar affinity. J Am Chem Soc 124:10966–10967

    Article  CAS  PubMed  Google Scholar 

  • Auweter SD, Oberstrass FC, Allain FH (2006) Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 34:4943–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkan A, Rojas M, Fujii S et al (2012) A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 8, e1002910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baruffini E, Dallabona C, Invernizzi F et al (2013) MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast. Hum Mutat 34:1501–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basanta-Sanchez M, Temple S, Ansari SA et al (2015) Attomole quantification and global profile of RNA modifications: epitranscriptome of human neural stem cells. Nucleic Acids Res. doi:10.1093/nar/gkv971

    PubMed  PubMed Central  Google Scholar 

  • Batista PJ, Molinie B, Wang J et al (2014) m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley U, Dyavaiah M, Patil A et al (2007) Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol Cell 28:860–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley U, Sosa MS, Avivar-Valderas A et al (2013) A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-alpha. EMBO Mol Med 5:366–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann AK, Campagna DR, McLoughlin EM et al (2010) Systematic molecular genetic analysis of congenital sideroblastic anemia: evidence for genetic heterogeneity and identification of novel mutations. Pediatr Blood Cancer 54:273–278

    PubMed  PubMed Central  Google Scholar 

  • Berulava T, Rahmann S, Rademacher K et al (2015) N6-adenosine methylation in MiRNAs. PLoS One 10, e0118438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beuning PJ, Musier-Forsyth K (1999) Transfer RNA recognition by aminoacyl-tRNA synthetases. Biopolymers 52:1–28

    Article  CAS  PubMed  Google Scholar 

  • Bilbille Y, Vendeix FA, Guenther R et al (2009) The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs. Nucleic Acids Res 37:3342–3353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjork GR, Durand JM, Hagervall TG et al (1999) Transfer RNA modification: influence on translational frameshifting and metabolism. FEBS Lett 452:47–51

    Article  CAS  PubMed  Google Scholar 

  • Booth MJ, Ost TW, Beraldi D et al (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8:1841–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brambillasca S, Altkrueger A, Colombo SF et al (2012) CDK5 Regulatory Subunit-associated Protein 1-Like 1 (CDKAL1) Is a Tail-anchored Protein in the Endoplasmic Reticulum (ER) of Insulinoma Cells. J Biol Chem 287:41808–41819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandon MC, Lott MT, Nguyen KC et al (2005) MITOMAP: a human mitochondrial genome database--2004 update. Nucleic Acids Res 33(Database issue):D611–613

    Article  CAS  PubMed  Google Scholar 

  • Brown TA (2002) Genomes. Wiley-Liss, Oxford

    Google Scholar 

  • Bykhovskaya Y, Casas K, Mengesha E et al (2004) Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 74:1303–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calnan BJ, Tidor B, Biancalana S et al (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252:1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Cantara WA, Crain PF, Rozenski J et al (2011) The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res 39(Database issue):D195–201

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Limbach PA (2015) Enhanced detection of post-transcriptional modifications using a mass-exclusion list strategy for RNA modification mapping by LC-MS/MS. Anal Chem 87:8433–8440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlile TM, Rojas-Duran MF, Zinshteyn B et al (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlile TM, Rojas-Duran MF, Gilbert WV (2015) Pseudo-Seq: genome-wide detection of pseudouridine modifications in RNA. Methods Enzymol 560:219–245

    Article  PubMed  Google Scholar 

  • Cattenoz PB, Taft RJ, Westhof E et al (2013) Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage. RNA 19:257–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavaluzzi MJ, Borer PN (2004) Revised UV extinction coefficients for nucleoside-5′-monophosphates and unpaired DNA and RNA. Nucleic Acids Res 32, e13

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan CT, Dyavaiah M, DeMott MS et al (2010) A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet 6, e1001247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhury S, Gray JJ (2008) Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. J Mol Biol 381:1068–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sierzputowska-Gracz H, Guenther R et al (1993) 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA. Biochemistry 32:10249–10253

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Zhao X, Kierzek R et al (2010) A flexible RNA backbone within the polypyrimidine tract is required for U2AF65 binding and pre-mRNA splicing in vivo. Mol Cell Biol 30:4108–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Xu Y, Lin Y et al (2013) Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population. J Diabetes 5:136–145

    Article  CAS  PubMed  Google Scholar 

  • Chow CS, Lamichhane TN, Mahto SK (2007) Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications. ACS Chem Biol 2:610–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke P, Leser JS, Bowen RA et al (2014) Virus-induced transcriptional changes in the brain include the differential expression of genes associated with interferon, apoptosis, interleukin 17 receptor A, and glutamate signaling as well as flavivirus-specific upregulation of tRNA synthetases. MBio 5:e00902–00914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Commans S, Lazard M, Delort F et al (1998) tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases. J Mol Biol 278:801–813

    Article  CAS  PubMed  Google Scholar 

  • Correia BE, Ban YE, Friend DJ et al (2011) Computational protein design using flexible backbone remodeling and resurfacing: case studies in structure-based antigen design. J Mol Biol 405:284–297

    Article  CAS  PubMed  Google Scholar 

  • Crain PF (1990) Preparation and enzymatic hydrolysis of DNA and RNA for mass spectrometry. Methods Enzymol 193:782–790

    Article  CAS  PubMed  Google Scholar 

  • Crick FH (1966) Codon–anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555

    Article  CAS  PubMed  Google Scholar 

  • Cusack S, Yaremchuk A, Tukalo M (1996) The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys) transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J 15:6321–6334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence selection. Science 278:82–87

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Xing L, Gong P et al (2008) Positive association of the FTSJ1 gene polymorphisms with nonsyndromic X-linked mental retardation in young Chinese male subjects. J Hum Genet 53:592–597

    Article  CAS  PubMed  Google Scholar 

  • Dao V, Guenther RH, Agris PF (1992) The role of 5-methylcytidine in the anticodon arm of yeast tRNA(Phe): site-specific Mg2+ binding and coupled conformational transition in DNA analogs. Biochemistry 31:11012–11019

    Article  CAS  PubMed  Google Scholar 

  • Daubner GM, Clery A, Allain FH (2013) RRM-RNA recognition: NMR or crystallography and new findings. Curr Opin Struct Biol 23:100–108

    Article  CAS  PubMed  Google Scholar 

  • Davis DR (1995) Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res 23:5020–5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis GE, Gehrke CW, Kuo KC et al (1979) Major and modified nucleosides in tRNA hydrolysates by high-performance liquid chromatography. J Chromatogr 173:281–298

    Article  CAS  PubMed  Google Scholar 

  • Desrosiers R, Friderici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A 71:3971–3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diabetes Genetics Initiative of Broad Institute of H, Mit LU, Novartis Institutes of BioMedical R et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336

    Google Scholar 

  • Dimauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37:222–232

    Article  CAS  PubMed  Google Scholar 

  • Dominissini D (2014) Genomics and proteomics. Roadmap to the epitranscriptome. Science 346:1192

    Article  PubMed  Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206

    Article  CAS  PubMed  Google Scholar 

  • Donmez G, Hartmuth K, Luhrmann R (2004) Modified nucleotides at the 5′ end of human U2 snRNA are required for spliceosomal E-complex formation. RNA 10:1925–1933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Draper DE (1999) Themes in RNA-protein recognition. J Mol Biol 293:255–270

    Article  CAS  PubMed  Google Scholar 

  • Edelheit S, Schwartz S, Mumbach MR et al (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet 9, e1003602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Hattab AW, Emrick LT, Chanprasert S et al (2014) Mitochondria: role of citrulline and arginine supplementation in MELAS syndrome. Int J Biochem Cell Biol 48:85–91

    Article  CAS  PubMed  Google Scholar 

  • Elliott HR, Samuels DC, Eden JA et al (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83:254–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis JJ, Broom M, Jones S (2007) Protein-RNA interactions: structural analysis and functional classes. Proteins 66:903–911

    Article  CAS  PubMed  Google Scholar 

  • Ernster L, Schatz G (1981) Mitochondria: a historical review. J Cell Biol 91:227s–255s

    Article  CAS  PubMed  Google Scholar 

  • Eshete M, Marchbank MT, Deutscher SL et al (2007) Specificity of phage display selected peptides for modified anticodon stem and loop domains of tRNA. Protein J 26:61–73

    Article  CAS  PubMed  Google Scholar 

  • Fahiminiya S, Almuriekhi M, Nawaz Z et al (2014) Whole exome sequencing unravels disease-causing genes in consanguineous families in Qatar. Clin Genet 86:134–141

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Vizarra E, Berardinelli A, Valente L et al (2007) Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J Med Genet 44:173–180

    Article  CAS  PubMed  Google Scholar 

  • Fischer N, Neumann P, Konevega AL et al (2015) Structure of the E. coli ribosome-EF-Tu complex at <3 A resolution by Cs-corrected cryo-EM. Nature 520:567–570

    Article  PubMed  CAS  Google Scholar 

  • Florentz C, Sohm B, Tryoen-Toth P et al (2003) Human mitochondrial tRNAs in health and disease. Cell Mol Life Sci 60:1356–1375

    Article  CAS  PubMed  Google Scholar 

  • Franckenberg S, Becker T, Beckmann R (2012) Structural view on recycling of archaeal and eukaryotic ribosomes after canonical termination and ribosome rescue. Curr Opin Struct Biol 22:786–796

    Article  CAS  PubMed  Google Scholar 

  • Freire JM, Veiga AS, de la Torre BG et al (2013) Peptides as models for the structure and function of viral capsid proteins: Insights on dengue virus capsid. Biopolymers 100:325–336

    Article  CAS  PubMed  Google Scholar 

  • Freist W, Gauss DH, Soll D et al (1997) Glutamyl-tRNA synthetase. Biol Chem 378:1313–1329

    CAS  PubMed  Google Scholar 

  • Freude K, Hoffmann K, Jensen LR et al (2004) Mutations in the FTSJ1 gene coding for a novel S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation. Am J Hum Genet 75:305–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froyen G, Bauters M, Boyle J et al (2007) Loss of SLC38A5 and FTSJ1 at Xp11.23 in three brothers with non-syndromic mental retardation due to a microdeletion in an unstable genomic region. Hum Genet 121:539–547

    Article  PubMed  Google Scholar 

  • Frugier M, Schimmel P (1997) Subtle atomic group discrimination in the RNA minor groove. Proc Natl Acad Sci U S A 94:11291–11294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frye M, Watt FM (2006) The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol 16:971–981

    Article  CAS  PubMed  Google Scholar 

  • Gaston KW, Limbach PA (2014) The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry. RNA Biol 11:1568–1585

    Article  PubMed  Google Scholar 

  • Gehrke CW, Kuo KCT (1990) Chromatography and modification of nucleosides. Amsterdam; New York, NY, U.S.A., Elsevier; Distributors for the U.S. and Canada Elsevier Science Pub. Co.

    Google Scholar 

  • Gehrke CW, Kuo KC, McCune RA et al (1982) Quantitative enzymatic hydrolysis of tRNAs: reversed-phase high-performance liquid chromatography of tRNA nucleosides. J Chromatogr 230:297–308

    Article  CAS  PubMed  Google Scholar 

  • Gehrke CW, McCune RA, Gama-Sosa MA et al (1984) Quantitative reversed-phase high-performance liquid chromatography of major and modified nucleosides in DNA. J Chromatogr 301:199–219

    Article  CAS  PubMed  Google Scholar 

  • Georgiev I, Keedy D, Richardson JS et al (2008) Algorithm for backrub motions in protein design. Bioinformatics 24:i196–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geula S, Moshitch-Moshkovitz S, Dominissini D et al (2015) Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347:1002–1006

    Article  CAS  PubMed  Google Scholar 

  • Ghezzi D, Baruffini E, Haack TB et al (2012) Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 90:1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girstmair H, Saffert P, Rode S et al (2013) Depletion of cognate charged transfer RNA causes translational frameshifting within the expanded CAG stretch in huntingtin. Cell Rep 3:148–159

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Li J, Dai L et al (2008) Genetic variations in FTSJ1 influence cognitive ability in young males in the Chinese Han population. J Neurogenet 22:277–287

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Nonaka I, Horai S (1990) A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348:651–653

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Nonaka I, Horai S (1991) A new mtDNA mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Biochim Biophys Acta 1097:238–240

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Horai S, Matsuoka T et al (1992) Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): a correlative study of the clinical features and mitochondrial DNA mutation. Neurology 42:545–550

    Article  CAS  PubMed  Google Scholar 

  • Graham WD, Barley-Maloney L, Stark CJ et al (2011) Functional recognition of the modified human tRNALys3(UUU) anticodon domain by HIV’s nucleocapsid protein and a peptide mimic. J Mol Biol 410:698–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grate D, Wilson C (1997) Role REVersal: understanding how RRE RNA binds its peptide ligand. Structure 5:7–11

    Article  CAS  PubMed  Google Scholar 

  • Gray MW (2013) Mitochondrial genome. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics. Academic Press, San Diego, CA, pp 441–442

    Chapter  Google Scholar 

  • Guan MX, Yan Q, Li X et al (2006) Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet 79:291–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustilo EM, Vendeix FA, Agris PF (2008) tRNA’s modifications bring order to gene expression. Curr Opin Microbiol 11:134–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy MP, Podyma BM, Preston MA et al (2012) Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. RNA 18:1921–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy MP, Shaw M, Weiner CL et al (2015) Defects in tRNA anticodon loop 2′-O-methylation are implicated in nonsyndromic X-linked intellectual disability due to mutations in FTSJ1. Hum Mutat 36:1176–1187

    Article  CAS  PubMed  Google Scholar 

  • Halder S, Bhattacharyya D (2013) RNA structure and dynamics: a base pairing perspective. Prog Biophys Mol Biol 113:264–283

    Article  CAS  PubMed  Google Scholar 

  • Halperin I, Ma B, Wolfson H et al (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47:409–443

    Article  CAS  PubMed  Google Scholar 

  • Hashimura Y, Nozu K, Kanegane H et al (2009) Minimal change nephrotic syndrome associated with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr Nephrol 24:1181–1186

    Article  PubMed  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    Article  CAS  PubMed  Google Scholar 

  • Hernandez HL, Pierrel F, Elleingand E et al (2007) MiaB, a bifunctional radical-S-adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters. Biochemistry 46:5140–5147

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi M, Yaghootkar H, Mook-Kanamori DO et al (2013) New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet 45:76–82

    Article  CAS  PubMed  Google Scholar 

  • Hsieh J, Andrews AJ, Fierke CA (2004) Roles of protein subunits in RNA-protein complexes: lessons from ribonuclease P. Biopolymers 73:79–89

    Article  CAS  PubMed  Google Scholar 

  • Hsu WY, Chen WT, Lin WD et al (2009) Analysis of urinary nucleosides as potential tumor markers in human colorectal cancer by high performance liquid chromatography/electrospray ionization tandem mass spectrometry. Clin Chim Acta 402:31–37

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi Y, Soma A, Ote T et al (2005) Molecular mechanism of lysidine synthesis that determines tRNA identity and codon recognition. Mol Cell 19:235–246

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata S, Ozawa Y, Katayama J et al (2004) Elevated expression level of 60-kDa subunit of tRNA-guanine transglycosylase in colon cancer. Cancer Lett 212:113–119

    Article  CAS  PubMed  Google Scholar 

  • Iwata M, Maeda S, Kamura Y et al (2012) Genetic risk score constructed using 14 susceptibility alleles for type 2 diabetes is associated with the early onset of diabetes and may predict the future requirement of insulin injections among Japanese individuals. Diabetes Care 35:1763–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia G, Fu Y, Zhao X et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Meidler R, Amitsur M et al (2001) Specific interaction between anticodon nuclease and the tRNA(Lys) wobble base. J Mol Biol 305:377–388

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Althoff EA, Clemente FR et al (2008) De novo computational design of retro-aldol enzymes. Science 319:1387–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen SK, Maus CE, Plikaytis BB et al (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol Cell 23:173–182

    Article  CAS  PubMed  Google Scholar 

  • Karanicolas J, Corn JE, Chen I et al (2011) A de novo protein binding pair by computational design and directed evolution. Mol Cell 42:250–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato T, Daigo Y, Hayama S et al (2005) A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res 65:5638–5646

    Article  CAS  PubMed  Google Scholar 

  • Kaufman RJ (2011) Beta-cell failure, stress, and type 2 diabetes. N Engl J Med 365:1931–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellner S, Burhenne J, Helm M (2010) Detection of RNA modifications. RNA Biol 7:237–247

    Article  CAS  PubMed  Google Scholar 

  • Kern D, Lapointe J (1979) Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Effect of alteration of the 5-(methylaminomethyl)-2-thiouridine in the anticodon of glutamic acid transfer ribonucleic acid on the catalytic mechanism. Biochemistry 18:5819–5826

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Rafiq MA, Noor A et al (2012) Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet 90:856–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kipper K, Sild S, Hetenyi C et al (2011) Pseudouridylation of 23S rRNA helix 69 promotes peptide release by release factor RF2 but not by release factor RF1. Biochimie 93:834–844

    Article  CAS  PubMed  Google Scholar 

  • Kirchner S, Ignatova Z (2015) Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16:98–112

    Article  CAS  PubMed  Google Scholar 

  • Kirino Y, Goto Y, Campos Y et al (2005) Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci U S A 102:7127–7132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Momoi MY, Tominaga K et al (1990) A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun 173:816–822

    Article  CAS  PubMed  Google Scholar 

  • Koga Y, Nonaka I, Kobayashi M et al (1988) Findings in muscle in complex I (NADH coenzyme Q reductase) deficiency. Ann Neurol 24:749–756

    Article  CAS  PubMed  Google Scholar 

  • Koo B, Becker LE, Chuang S et al (1993) Mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes (MELAS): clinical, radiological, pathological, and genetic observations. Ann Neurol 34:25–32

    Article  CAS  PubMed  Google Scholar 

  • Kopajtich R, Nicholls TJ, Rorbach J et al (2014) Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am J Hum Genet 95:708–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krokowski D, Han J, Saikia M et al (2013) A self-defeating anabolic program leads to beta-cell apoptosis in endoplasmic reticulum stress-induced diabetes via regulation of amino acid flux. J Biol Chem 288:17202–17213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger MK, Pedersen S, Hagervall TG et al (1998) The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J Mol Biol 284:621–631

    Article  CAS  PubMed  Google Scholar 

  • Kurata S, Weixlbaumer A, Ohtsuki T et al (2008) Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U.G wobble pairing during decoding. J Biol Chem 283:18801–18811

    Article  CAS  PubMed  Google Scholar 

  • Laourdakis CD, Merino EF, Neilson AP et al (2014) Comprehensive quantitative analysis of purines and pyrimidines in the human malaria parasite using ion-pairing ultra-performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 967:127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JB, Church GM (2013) Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat Neurosci 16:1518–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Guan MX (2002) A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12S rRNA mutation. Mol Cell Biol 22:7701–7711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Li R, Lin X et al (2002) Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12 S rRNA A1555G mutation. J Biol Chem 277:27256–27264

    Article  CAS  PubMed  Google Scholar 

  • Li CH, Zuo ZC, Su JG et al (2013) The interactions and recognition of cyclic peptide mimetics of Tat with HIV-1 TAR RNA: a molecular dynamics simulation study. J Biomol Struct Dyn 31:276–287

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ma S, Yi C (2015) Pseudouridine chemical labeling and profiling. Methods Enzymol 560:247–272

    Article  PubMed  Google Scholar 

  • Lilley DM (2012) The structure and folding of kink turns in RNA. Wiley Interdiscip Rev RNA 3:797–805

    Article  CAS  PubMed  Google Scholar 

  • Lim VI (1995) Analysis of action of the wobble adenine on codon reading within the ribosome. J Mol Biol 252:277–282

    Article  CAS  PubMed  Google Scholar 

  • Linder B, Grozhik AV, Olarerin-George AO et al (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12:767–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippow SM, Tidor B (2007) Progress in computational protein design. Curr Opin Biotechnol 18:305–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Pan T (2015) RNA epigenetics. Transl Res 165:28–35

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yue Y, Han D et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95

    Article  CAS  PubMed  Google Scholar 

  • Long KS, Crothers DM (1999) Characterization of the solution conformations of unbound and Tat peptide-bound forms of HIV-1 TAR RNA. Biochemistry 38:10059–10069

    Article  CAS  PubMed  Google Scholar 

  • Luft R (1994) The development of mitochondrial medicine. Proc Natl Acad Sci U S A 91:8731–8738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–490

    Article  CAS  PubMed  Google Scholar 

  • Luo GZ, MacQueen A, Zheng G et al (2014) Unique features of the m6A methylome in Arabidopsis thaliana. Nat Commun 5:5630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machnicka MA, Milanowska K, Osman Oglou O et al (2013) MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res 41(Database issue):D262–267

    Article  CAS  PubMed  Google Scholar 

  • Mackereth CD, Sattler M (2012) Dynamics in multi-domain protein recognition of RNA. Curr Opin Struct Biol 22:287–296

    Article  CAS  PubMed  Google Scholar 

  • Madore E, Florentz C, Giege R et al (1999) Effect of modified nucleotides on Escherichia coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm5 and s2 modifications of U34. Eur J Biochem 266:1128–1135

    Article  CAS  PubMed  Google Scholar 

  • Maehigashi T, Dunkle JA, Miles SJ et al (2014) Structural insights into +1 frameshifting promoted by expanded or modification-deficient anticodon stem loops. Proc Natl Acad Sci U S A 111:12740–12745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandell DJ, Kortemme T (2009) Backbone flexibility in computational protein design. Curr Opin Biotechnol 20:420–428

    Article  CAS  PubMed  Google Scholar 

  • Manna AK, Kumar A, Ray U et al (2013) A cyclic peptide mimic of an RNA recognition motif of human La protein is a potent inhibitor of hepatitis C virus. Antiviral Res 97:223–226

    Article  CAS  PubMed  Google Scholar 

  • Martinez FJ, Lee JH, Lee JE et al (2012) Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet 49:380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masliah G, Barraud P, Allain FH (2013) RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cell Mol Life Sci 70:1875–1895

    CAS  PubMed  Google Scholar 

  • Meng Z, Limbach PA (2006) Mass spectrometry of RNA: linking the genome to the proteome. Brief Funct Genomic Proteomic 5:87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer KD, Jaffrey SR (2014) The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol 15:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer KD, Saletore Y, Zumbo P et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore PB (1999) Structural motifs in RNA. Annu Rev Biochem 68:287–300

    Article  CAS  PubMed  Google Scholar 

  • Moriya J, Yokogawa T, Wakita K et al (1994) A novel modified nucleoside found at the first position of the anticodon of methionine transfer-RNA from Bovine Liver-Mitochondria. Biochemistry 33:2234–2239

    Article  CAS  PubMed  Google Scholar 

  • Moukadiri I, Prado S, Piera J et al (2009) Evolutionarily conserved proteins MnmE and GidA catalyze the formation of two methyluridine derivatives at tRNA wobble positions. Nucleic Acids Res 37:7177–7193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mucha P, Szyk A, Rekowski P et al (2001) Anticodon domain methylated nucleosides of yeast tRNA(Phe) are significant recognition determinants in the binding of a phage display selected peptide. Biochemistry 40:14191–14199

    Article  CAS  PubMed  Google Scholar 

  • Mucha P, Szyk A, Rekowski P et al (2002) Interaction of RNA with phage display selected peptides analyzed by capillary electrophoresis mobility shift assay. RNA 8:698–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mucha P, Szyk A, Rekowski P et al (2003) Using capillary electrophoresis to study methylation effect on RNA-peptide interaction. Acta Biochim Pol 50:857–864

    CAS  PubMed  Google Scholar 

  • Mucha P, Szyk A, Rekowski P et al (2004) Sequence-altered peptide adopts optimum conformation for modification-dependent binding of the yeast tRNAPhe anticodon domain. Protein J 23:33–38

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu T, Nishikawa K, Nemoto F et al (1988) Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 336:179–181

    Article  CAS  PubMed  Google Scholar 

  • Murphy FV, Ramakrishnan V, Malkiewicz A et al (2004) The role of modifications in codon discrimination by tRNA(Lys)UUU. Nat Struct Mol Biol 11:1186–1191

    Article  CAS  PubMed  Google Scholar 

  • Muto Y, Yokoyama S (2012) Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems. Wiley Interdiscip Rev RNA 3:229–246

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Bonnefond L, Kimura S et al (2009) Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase. Nature 461:1144–1148

    Article  CAS  PubMed  Google Scholar 

  • Ng MC, Saxena R, Li J et al (2013) Transferability and fine mapping of type 2 diabetes loci in African Americans: the Candidate Gene Association Resource Plus Study. Diabetes 62:965–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Jones AJ, Wu H et al (2011) gamma-AApeptides bind to RNA by mimicking RNA-binding proteins. Org Biomol Chem 9:6604–6609

    Article  CAS  PubMed  Google Scholar 

  • Numata T, Ikeuchi Y, Fukai S et al (2006) Snapshots of tRNA sulphuration via an adenylated intermediate. Nature 442:419–424

    Article  CAS  PubMed  Google Scholar 

  • O’Connell M (2015) RNA modification and the epitranscriptome; the next frontier. RNA 21:703–704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ofek G, Guenaga FJ, Schief WR et al (2010) Elicitation of structure-specific antibodies by epitope scaffolds. Proc Natl Acad Sci U S A 107:17880–17887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ofengand J (2002) Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett 514:17–25

    Article  CAS  PubMed  Google Scholar 

  • Ogle JM, Murphy FV, Tarry MJ et al (2002) Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111:721–732

    Article  CAS  PubMed  Google Scholar 

  • Omori S, Tanaka Y, Takahashi A et al (2008) Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57:791–795

    Article  CAS  PubMed  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascoe L, Tura A, Patel SK et al (2007) Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes 56:3101–3104

    Article  CAS  PubMed  Google Scholar 

  • Paska AV, Hudler P (2015) Aberrant methylation patterns in cancer: a clinical view. Biochem Med (Zagreb) 25:161–176

    Article  Google Scholar 

  • Patton JR, Bykhovskaya Y, Mengesha E et al (2005) Mitochondrial myopathy and sideroblastic anemia (MLASA): missense mutation in the pseudouridine synthase 1 (PUS1) gene is associated with the loss of tRNA pseudouridylation. J Biol Chem 280:19823–19828

    Article  CAS  PubMed  Google Scholar 

  • Pavon-Eternod M, Gomes S, Geslain R et al (2009) tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 37:7268–7280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavon-Eternod M, Wei M, Pan T et al (2010) Profiling non-lysyl tRNAs in HIV-1. RNA 16:267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavon-Eternod M, David A, Dittmar K et al (2013) Vaccinia and influenza A viruses select rather than adjust tRNAs to optimize translation. Nucleic Acids Res 41:1914–1921

    Article  CAS  PubMed  Google Scholar 

  • Pierrel F, Bjork GR, Fontecave M et al (2002) Enzymatic modification of tRNAs: MiaB is an iron-sulfur protein. J Biol Chem 277:13367–13370

    Article  CAS  PubMed  Google Scholar 

  • Pierrel F, Douki T, Fontecave M et al (2004) MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J Biol Chem 279:47555–47563

    Article  CAS  PubMed  Google Scholar 

  • Ping XL, Sun BF, Wang L et al (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomerantz SC, McCloskey JA (1990) Analysis of RNA hydrolyzates by liquid chromatography-mass spectrometry. Methods Enzymol 193:796–824

    Article  CAS  PubMed  Google Scholar 

  • Putz J, Florentz C, Benseler F et al (1994) A single methyl group prevents the mischarging of a tRNA. Nat Struct Biol 1:580–582

    Article  CAS  PubMed  Google Scholar 

  • Ramser J, Winnepenninckx B, Lenski C et al (2004) A splice site mutation in the methyltransferase gene FTSJ1 in Xp11.23 is associated with non-syndromic mental retardation in a large Belgian family (MRX9). J Med Genet 41:679–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichow SL, Hamma T, Ferre-D’Amare AR et al (2007) The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35:1452–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter NJ, Chan CW, Mondragon A (2011) Emerging structural themes in large RNA molecules. Curr Opin Struct Biol 21:319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley LG, Cooper S, Hickey P et al (2010) Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia—MLASA syndrome. Am J Hum Genet 87:52–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodnina MV, Wintermeyer W (2001) Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu Rev Biochem 70:415–435

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez V, Chen Y, Elkahloun A et al (2007) Chromosome 8 BAC array comparative genomic hybridization and expression analysis identify amplification and overexpression of TRMT12 in breast cancer. Genes Chromosomes Cancer 46:694–707

    Article  CAS  PubMed  Google Scholar 

  • Rose RE, Quinn R, Sayre JL et al (2015) Profiling ribonucleotide modifications at full-transcriptome level: a step toward MS-based epitranscriptomics. RNA 21:1361–1374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russell SP, Limbach PA (2013) Evaluating the reproducibility of quantifying modified nucleosides from ribonucleic acids by LC-UV-MS. J Chromatogr B Analyt Technol Biomed Life Sci 923–924:74–82

    Article  PubMed  CAS  Google Scholar 

  • Sakurai M, Suzuki T (2011) Biochemical identification of A-to-I RNA editing sites by the inosine chemical erasing (ICE) method. Methods Mol Biol 718:89–99

    Article  CAS  PubMed  Google Scholar 

  • Samish I, MacDermaid CM, Perez-Aguilar JM et al (2011) Theoretical and computational protein design. Annu Rev Phys Chem 62:129–149

    Article  CAS  PubMed  Google Scholar 

  • Satterlee JS, Basanta-Sanchez M, Blanco S et al (2014) Novel RNA modifications in the nervous system: form and function. J Neurosci 34:15170–15177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scaglia F, Northrop JL (2006) The mitochondrial myopathy encephalopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome: a review of treatment options. CNS Drugs 20:443–464

    Article  CAS  PubMed  Google Scholar 

  • Schaefer M, Hagemann S, Hanna K et al (2009a) Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res 69:8127–8132

    Article  CAS  PubMed  Google Scholar 

  • Schaefer M, Pollex T, Hanna K et al (2009b) RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37, e12

    Article  PubMed  CAS  Google Scholar 

  • Schellenberg MJ, Dul EL, MacMillan AM (2011) Structural model of the p14/SF3b155. branch duplex complex. RNA 17(1):155–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimmel P, Frugier M, Glasfeld E (1997) Peptides for RNA discrimination and for assembly of enzymes that act on RNA. Nucleic Acids Symp Ser 36:1

    CAS  PubMed  Google Scholar 

  • Schmidt PG, Sierzputowska-Gracz H, Agris PF (1987) Internal motions in yeast phenylalanine transfer RNA from 13C NMR relaxation rates of modified base methyl groups: a model-free approach. Biochemistry 26:8529–8534

    Article  CAS  PubMed  Google Scholar 

  • Schwartz S, Agarwala SD, Mumbach MR et al (2013) High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155:1409–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz S, Bernstein DA, Mumbach MR et al (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seno T, Agris PF, Soll D (1974) Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation. Biochim Biophys Acta 349:328–338

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Lafontaine DL (2015) ‘View From A Bridge’: a new perspective on eukaryotic rRNA base modification. Trends Biochem Sci 40:560–575

    Article  CAS  PubMed  Google Scholar 

  • Sierzputowska-Gracz H, Sochacka E, Malkiewicz A et al (1987) Chemistry and structure of modified uridines in the anticodon, wobble position of transfer RNA are determined by thiolation. J Am Chem Soc 109:7171–7177

    Article  CAS  Google Scholar 

  • Simos G, Tekotte H, Grosjean H et al (1996) Nuclear pore proteins are involved in the biogenesis of functional tRNA. EMBO J 15:2270–2284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slotkin W, Nishikura K (2013) Adenosine-to-inosine RNA editing and human disease. Genome Med 5:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Song CX, Yi C, He C (2012) Mapping recently identified nucleotide variants in the genome and transcriptome. Nat Biotechnol 30:1107–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spears JL, Xiao X, Hall CK et al (2014) Amino acid signature enables proteins to recognize modified tRNA. Biochemistry 53:1125–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spitale RC, Flynn RA, Zhang QC et al (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spriggs RV, Murakami Y, Nakamura H et al (2009) Protein function annotation from sequence: prediction of residues interacting with RNA. Bioinformatics 25:1492–1497

    Article  CAS  PubMed  Google Scholar 

  • Squires JE, Patel HR, Nousch M et al (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinthorsdottir V, Thorleifsson G, Reynisdottir I et al (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39:770–775

    Article  CAS  PubMed  Google Scholar 

  • Stewart JB, Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16:530–542

    Article  CAS  PubMed  Google Scholar 

  • Stuart JW, Basti MM, Smith WS et al (1996) Structure of the trinucleotide D acp3U-A with Coordinated Mg2+ demonstrates that modified nucleosides contribute to regional conformations of RNA. Nucleosides Nucleotides 15:1009–1028

    Article  Google Scholar 

  • Stuart JW, Gdaniec Z, Guenther R et al (2000) Functional anticodon architecture of human tRNALys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t6A. Biochemistry 39:13396–13404

    Article  CAS  PubMed  Google Scholar 

  • Stuart JW, Koshlap KM, Guenther R et al (2003) Naturally-occurring modification restricts the anticodon domain conformational space of tRNA(Phe). J Mol Biol 334:901–918

    Article  CAS  PubMed  Google Scholar 

  • Su D, Chan CT, Gu C et al (2014) Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat Protoc 9:828–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudrik C, Arha M, Cao J et al (2013) Translational repression using BIV Tat peptide-TAR RNA interaction in mammalian cells. Chem Commun (Camb) 49:7457–7459

    Article  CAS  Google Scholar 

  • Suzuki T, Suzuki T (2014) A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res 42:7346–7357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Suzuki T, Wada T et al (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21:6581–6589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Nagao A, Suzuki T (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329

    Article  CAS  PubMed  Google Scholar 

  • Sylvers LA, Rogers KC, Shimizu M et al (1993) A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32:3836–3841

    Article  CAS  PubMed  Google Scholar 

  • Takano K, Nakagawa E, Inoue K et al (2008) A loss-of-function mutation in the FTSJ1 gene causes nonsyndromic X-linked mental retardation in a Japanese family. Am J Med Genet B Neuropsychiatr Genet 147B:479–484

    Article  CAS  PubMed  Google Scholar 

  • Takeoka S, Unoki M, Onouchi Y et al (2001) Amino-acid substitutions in the IKAP gene product significantly increase risk for bronchial asthma in children. J Hum Genet 46:57–63

    Article  CAS  PubMed  Google Scholar 

  • Tao J, Frankel AD (1992) Specific binding of arginine to TAR RNA. Proc Natl Acad Sci U S A 89:2723–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor RW, Pyle A, Griffin H et al (2014) Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312:68–77

    Article  PubMed  CAS  Google Scholar 

  • Thapar R, Denmon AP, Nikonowicz EP (2014) Recognition modes of RNA tetraloops and tetraloop-like motifs by RNA-binding proteins. Wiley Interdiscip Rev RNA 5:49–67

    Article  CAS  PubMed  Google Scholar 

  • Thomas SR, Keller CA, Szyk A et al (2011) Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Res 39:2445–2457

    Article  CAS  PubMed  Google Scholar 

  • Torres AG, Batlle E, Ribas de Pouplana L (2014) Role of tRNA modifications in human diseases. Trends Mol Med 20:306–314

    Article  CAS  PubMed  Google Scholar 

  • Towns WL, Begley TJ (2012) Transfer RNA methytransferases and their corresponding modifications in budding yeast and humans: activities, predications, and potential roles in human health. DNA Cell Biol 31:434–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzima E, Schimmel P (2006) Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase. Trends Biochem Sci 31:7–10

    Article  CAS  PubMed  Google Scholar 

  • Ulyanov NB, James TL (2010) RNA structural motifs that entail hydrogen bonds involving sugar-phosphate backbone atoms of RNA. N J Chem 34:910–917

    Article  CAS  Google Scholar 

  • Umeda N, Suzuki T, Yukawa M et al (2005) Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. Implications for the molecular pathogenesis of human mitochondrial diseases. J Biol Chem 280(2):1613–1624

    Article  CAS  PubMed  Google Scholar 

  • UniProt C (2009) The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res 37(Database issue):D169–174

    Google Scholar 

  • Urbonavicius J, Qian O, Durand JMB et al (2001) Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 20(17):4863–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vachon CM, Sellers TA, Carlson EE et al (2007) Strong evidence of a genetic determinant for mammographic density, a major risk factor for breast cancer. Cancer Res 67:8412–8418

    Article  CAS  PubMed  Google Scholar 

  • van Buul CP, van Knippenberg PH (1985) Nucleotide sequence of the ksgA gene of Escherichia coli: comparison of methyltransferases effecting dimethylation of adenosine in ribosomal RNA. Gene 38:65–72

    Article  PubMed  Google Scholar 

  • van Buul CP, Visser W, van Knippenberg PH (1984) Increased translational fidelity caused by the antibiotic kasugamycin and ribosomal ambiguity in mutants harbouring the ksgA gene. FEBS Lett 177:119–124

    Article  PubMed  Google Scholar 

  • Vendeix FA, Murphy FV, Cantara WA et al (2012) Human tRNA(Lys3)(UUU) is pre-structured by natural modifications for cognate and wobble codon binding through keto-enol tautomerism. J Mol Biol 416:467–485

    Article  CAS  PubMed  Google Scholar 

  • Villarroya M, Prado S, Esteve JM et al (2008) Characterization of human GTPBP3, a GTP-binding protein involved in mitochondrial tRNA modification. Mol Cell Biol 28:7514–7531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt CA, Gordon DB, Mayo SL (2000) Trading accuracy for speed: a quantitative comparison of search algorithms in protein sequence design. J Mol Biol 299:789–803

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Bradley P, Baker D (2007) Protein-protein docking with backbone flexibility. J Mol Biol 373(2):503–519

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu Z, Gomez A et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120

    Article  PubMed  CAS  Google Scholar 

  • Wei FY, Tomizawa K (2011) Functional loss of Cdkal1, a novel tRNA modification enzyme, causes the development of type 2 diabetes. Endocr J 58:819–825

    Article  CAS  PubMed  Google Scholar 

  • Wei FY, Tomizawa K (2012) Development of type 2 diabetes caused by a deficiency of a tRNA(lys) modification. Islets 4:71–73

    Article  PubMed  Google Scholar 

  • Wei FY, Suzuki T, Watanabe S et al (2011) Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. J Clin Invest 121:3598–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss MA, Narayana N (1998) RNA recognition by arginine-rich peptide motifs. Biopolymers 48:167–180

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Hall CK, Agris PF (2014) The design of a peptide sequence to inhibit HIV replication: a search algorithm combining Monte Carlo and self-consistent mean field techniques. J Biomol Struct Dyn 32:1523–1536

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Agris PF, Hall CK (2015) Molecular recognition mechanism of peptide chain bound to the tRNA(Lys3) anticodon loop in silico. J Biomol Struct Dyn 33:14–27

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Wang X, Liu K et al (2014) Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol 10:927–929

    Article  CAS  PubMed  Google Scholar 

  • Yarian C, Marszalek M, Sochacka E et al (2000) Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNALysUUU species. Biochemistry 39(44):13390–13395

    Article  CAS  PubMed  Google Scholar 

  • Yarian C, Townsend H, Czestkowski W et al (2002) Accurate translation of the genetic code depends on tRNA modified nucleosides. J Biol Chem 277:16391–16395

    Article  CAS  PubMed  Google Scholar 

  • Yasukawa T, Suzuki T, Ishii N et al (2000a) Defect in modification at the anticodon wobble nucleotide of mitochondrial tRNA(Lys) with the MERRF encephalomyopathy pathogenic mutation. FEBS Lett 467:175–178

    Article  CAS  PubMed  Google Scholar 

  • Yasukawa T, Suzuki T, Ueda T et al (2000b) Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J Biol Chem 275:4251–4257

    Article  CAS  PubMed  Google Scholar 

  • Yasukawa T, Suzuki T, Ishii N et al (2001) Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J 20:4794–4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasukawa T, Kirino Y, Ishii N et al (2005) Wobble modification deficiency in mutant tRNAs in patients with mitochondrial diseases. FEBS Lett 579:2948–2952

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Gorin A, Frederick R et al (1999) RNA architecture dictates the conformations of a bound peptide. Chem Biol 6:657–669

    Article  CAS  PubMed  Google Scholar 

  • Yu YT, Shu MD, Steitz JA (1998) Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J 17:5783–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu AT, Ge J, Yu YT (2011) Pseudouridines in spliceosomal snRNAs. Protein Cell 2:712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Y, Liu J, He C (2015) RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 29:1343–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeharia A, Shaag A, Pappo O et al (2009) Acute infantile liver failure due to mutations in the TRMU gene. Am J Hum Genet 85:401–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications—writers that read. EMBO Rep 16:1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao BS, He C (2015) Pseudouridine in a new era of RNA modifications. Cell Res 25:153–154

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Dahl JA, Niu Y et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Goodenbour JM, Godley LA et al (2009) High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma. Biochem Biophys Res Commun 385:160–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou KI, Parisien M, Dai Q et al (2015) N-methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding. J Mol Biol pii: S0022-2836(15)00486-6. doi: 10.1016/j.jmb.2015.08.021. [Epub ahead of print]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. Agris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frohlich, K.M., Sarachan, K.L., Todd, G.C., Basanta-Sanchez, M., Väre, V.Y.P., Agris, P.F. (2016). Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. In: Jurga, S., Erdmann (Deceased), V., Barciszewski, J. (eds) Modified Nucleic Acids in Biology and Medicine. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-34175-0_5

Download citation

Publish with us

Policies and ethics