Skip to main content

Sulfur Modifications in tRNA: Function and Implications for Human Disease

  • Chapter
  • First Online:

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Transfer RNA is an adaptor molecule that links amino acids to codons on messenger RNA. Functional tRNA molecules are produced by posttranscriptional processing events, such as splicing, end maturation, and chemical modifications of bases and sugars. More than one hundred types of naturally occurring chemical modifications of RNA are currently known. This chapter will summarize the recent advances in our understanding of the sulfur modifications of tRNA and their roles in cellular functions. The biosynthesis of tRNA sulfur modifications involves unique sulfur trafficking systems and modification enzymes that eventually result in the incorporation of a sulfur atom into tRNA. tRNA thionucleosides have been known for some time to be important for accurate and efficient translation, but more recently, these modifications and the codon usage bias of genes have been proposed to control the translation efficiency of specific groups of genes, allowing the organism to adapt to specific environments. Sulfur modifications of tRNA have also far-reaching implications for the molecular pathogenesis of human diseases, and this chapter provides a comprehensive and up-to-date overview of advances in our knowledge of the mechanisms involved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agris PF, Sierzputowska-Gracz H, Smith W et al (1992) Thiolation of uridine carbon-2 restricts the motional dynamics of the transfer RNA wobble position nucleoside. J Am Chem Soc 114:2652–2656

    Article  CAS  Google Scholar 

  • Alings F, Sarin LP, Fufezan C et al (2015) An evolutionary approach uncovers a diverse response of tRNA 2-thiolation to elevated temperatures in yeast. RNA 21:202–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Armengod ME, Meseguer S, Villarroya M et al (2014) Modification of the wobble uridine in bacterial and mitochondrial tRNAs reading NNA/NNG triplets of 2-codon boxes. RNA Biol 11:1495–1507

    Article  PubMed  Google Scholar 

  • Arragain S, Handelman SK, Forouhar F et al (2010) Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. J Biol Chem 285:28425–28433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkins JF, Bjork GR (2009) A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Microbiol Mol Biol Rev 73:178–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer F, Matsuyama A, Candiracci J et al (2012) Translational control of cell division by Elongator. Cell Rep 1:424–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley U, Dyavaiah M, Patil A et al (2007) Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol Cell 28:860–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjork GR (1995) Biosynthesis and function of modified nucleosides. In: Soll D, RajBhabdary UL (eds) tRNA: structure, biosynthesis, and function. ASM Press, Washington, DC, pp 165–205

    Chapter  Google Scholar 

  • Bjork GR, Huang B, Persson OP et al (2007) A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. RNA 13:1245–1255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Black KA, Dos Santos PC (2015) Abbreviated pathway for biosynthesis of 2-thiouridine in Bacillus subtilis. J Bacteriol 197:1952–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boczonadi V, Smith PM, Pyle A et al (2013) Altered 2-thiouridylation impairs mitochondrial translation in reversible infantile respiratory chain deficiency. Hum Mol Genet 22:4602–4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvier D, Labessan N, Clemancey M et al (2014) TtcA a new tRNA-thioltransferase with an Fe-S cluster. Nucleic Acids Res 42:7960–7970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carre DS, Thomas G, Favre A (1974) Conformation and functioning of tRNAs: cross-linked tRNAs as substrate for tRNA nucleotidyl-transferase and aminoacyl synthetases. Biochimie 56:1089–1101

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Huang B, Eliasson M et al (2011) Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. PLoS Genet 7, e1002258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crimi M, Bordoni A, Menozzi G et al (2005) Skeletal muscle gene expression profiling in mitochondrial disorders. FASEB J 19:866–868

    CAS  PubMed  Google Scholar 

  • Dahl JU, Radon C, Buhning M et al (2013) The sulfur carrier protein TusA has a pleiotropic role in Escherichia coli that also affects molybdenum cofactor biosynthesis. J Biol Chem 288:5426–5442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damon JR, Pincus D, Ploegh HL (2015) tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae. Mol Biol Cell 26:270–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dewez M, Bauer F, Dieu M et al (2008) The conserved Wobble uridine tRNA thiolase Ctu1-Ctu2 is required to maintain genome integrity. Proc Natl Acad Sci U S A 105:5459–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diabetes Genetics Initiative of Broad Institute LU, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336

    Google Scholar 

  • Durant PC, Bajji AC, Sundaram M et al (2005) Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A. Biochemistry 44:8078–8089

    Article  CAS  PubMed  Google Scholar 

  • Esberg A, Huang B, Johansson MJ et al (2006) Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell 24:139–148

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Vazquez J, Vargas-Perez I, Sanso M et al (2013) Modification of tRNA(Lys) UUU by elongator is essential for efficient translation of stress mRNAs. PLoS Genet 9, e1003647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint DH (1996) Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase. J Biol Chem 271:16068–16074

    Article  CAS  PubMed  Google Scholar 

  • Forouhar F, Arragain S, Atta M et al (2013) Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases. Nat Chem Biol 9:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa K, Mizushima N, Noda T et al (2000) A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J Biol Chem 275:7462–7465

    Article  CAS  PubMed  Google Scholar 

  • Gaignard P, Gonzales E, Ackermann O et al (2013) Mitochondrial infantile liver disease due to TRMU gene mutations: three new cases. JIMD Rep 11:117–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Goehring AS, Rivers DM, Sprague GF Jr (2003) Attachment of the ubiquitin-related protein Urm1p to the antioxidant protein Ahp1p. Eukaryot Cell 2:930–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan MX, Yan Q, Li X et al (2006) Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet 79:291–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidese R, Mihara H, Esaki N (2011) Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors. Appl Microbiol Biotechnol 91:47–61

    Article  CAS  PubMed  Google Scholar 

  • Horie N, Hara-Yokoyama M, Yokoyama S et al (1985) Two tRNAIle1 species from an extreme thermophile, Thermus thermophilus HB8: effect of 2-thiolation of ribothymidine on the thermostability of tRNA. Biochemistry 24:5711–5715

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Lu J, Bystrom AS (2008) A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14:2183–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iben JR, Maraia RJ (2014) tRNA gene copy number variation in humans. Gene 536:376–384

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi Y, Shigi N, Kato J et al (2006) Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol Cell 21:97–108

    Article  CAS  PubMed  Google Scholar 

  • Isak G, Ryden-Aulin M (2009) Hypomodification of the wobble base in tRNAGlu, tRNALys, and tRNAGln suppresses the temperature-sensitive phenotype caused by mutant release factor 1. J Bacteriol 191:1604–1609

    Article  CAS  PubMed  Google Scholar 

  • Jager G, Leipuviene R, Pollard MG et al (2004) The conserved Cys-X1-X2-Cys motif present in the TtcA protein is required for the thiolation of cytidine in position 32 of tRNA from Salmonella enterica serovar Typhimurium. J Bacteriol 186:750–757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jager G, Nilsson K, Bjork GR (2013) The phenotype of many independently isolated +1 frameshift suppressor mutants supports a pivotal role of the P-site in reading frame maintenance. PLoS One 8, e60246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jenner LB, Demeshkina N, Yusupova G et al (2010) Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat Struct Mol Biol 17:555–560

    Article  CAS  PubMed  Google Scholar 

  • Johansson MJ, Esberg A, Huang B et al (2008) Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 28:3301–3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kambampati R, Lauhon CT (2000) Evidence for the transfer of sulfane sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. J Biol Chem 275:10727–10730

    Article  CAS  PubMed  Google Scholar 

  • Kambampati R, Lauhon CT (2003) MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochemistry 42:1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Kirino Y, Suzuki T (2005) Human mitochondrial diseases associated with tRNA wobble modification deficiency. RNA Biol 2:41–44

    Article  CAS  PubMed  Google Scholar 

  • Kirino Y, Yasukawa T, Ohta S et al (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci U S A 101:15070–15075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalak JA, Dalluge JJ, McCloskey JA et al (1994) The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry 33:7869–7876

    Article  CAS  PubMed  Google Scholar 

  • Lauhon CT (2002) Requirement for IscS in biosynthesis of all thionucleosides in Escherichia coli. J Bacteriol 184:6820–6829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauhon CT, Kambampati R (2000) The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD. J Biol Chem 275:20096–20103

    Article  CAS  PubMed  Google Scholar 

  • Lauhon CT, Skovran E, Urbina HD et al (2004) Substitutions in an active site loop of Escherichia coli IscS result in specific defects in Fe-S cluster and thionucleoside biosynthesis in vivo. J Biol Chem 279:19551–19558

    Article  CAS  PubMed  Google Scholar 

  • Laxman S, Sutter BM, Wu X et al (2013) Sulfur amino acids regulate translational capacity and metabolic homeostasis through modulation of tRNA thiolation. Cell 154:416–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leidel S, Pedrioli PG, Bucher T et al (2009) Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458:228–232

    Article  CAS  PubMed  Google Scholar 

  • Leipuviene R, Qian Q, Bjork GR (2004) Formation of thiolated nucleosides present in tRNA from Salmonella enterica serovar Typhimurium occurs in two principally distinct pathways. J Bacteriol 186:758–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maraia RJ, Iben JR (2014) Different types of secondary information in the genetic code. RNA 20:977–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard ND, Macklin DN, Kirkegaard K et al (2012) Competing pathways control host resistance to virus via tRNA modification and programmed ribosomal frameshifting. Mol Syst Biol 8:567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meseguer S, Martinez-Zamora A, Garcia-Arumi E et al (2015) The ROS-sensitive microRNA-9/9*controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet 24:167–184

    Article  PubMed  CAS  Google Scholar 

  • Meyer KD, Jaffrey SR (2014) The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol 15:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyauchi K, Kimura S, Suzuki T (2013) A cyclic form of N6-threonylcarbamoyladenosine as a widely distributed tRNA hypermodification. Nat Chem Biol 9:105–111

    Article  CAS  PubMed  Google Scholar 

  • Mueller EG, Palenchar PM (1999) Using genomic information to investigate the function of ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis. Protein Sci 8:2424–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller EG, Palenchar PM, Buck CJ (2001) The role of the cysteine residues of ThiI in the generation of 4-thiouridine in tRNA. J Biol Chem 276:33588–33595

    Article  CAS  PubMed  Google Scholar 

  • Murphy FV, Ramakrishnan V, Malkiewicz A et al (2004) The role of modifications in codon discrimination by tRNA(Lys)UUU. Nat Struct Mol Biol 11:1186–1191

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Kuratani M, Goto-Ito S et al (2013) Crystallographic and mutational studies on the tRNA thiouridine synthetase TtuA. Proteins 81:1232–1244

    Article  CAS  PubMed  Google Scholar 

  • Nakai Y, Nakai M, Lill R et al (2007) Thio modification of yeast cytosolic tRNA is an iron-sulfur protein-dependent pathway. Mol Cell Biol 27:2841–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai Y, Nakai M, Hayashi H (2008) Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J Biol Chem 283:27469–27476

    Article  CAS  PubMed  Google Scholar 

  • Nedialkova DD, Leidel SA (2015) Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 161:1606–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann P, Lakomek K, Naumann PT et al (2014) Crystal structure of a 4-thiouridine synthetase-RNA complex reveals specificity of tRNA U8 modification. Nucleic Acids Res 42:6673–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson K, Lundgren HK, Hagervall TG et al (2002) The cysteine desulfurase IscS is required for synthesis of all five thiolated nucleosides present in tRNA from Salmonella enterica serovar typhimurium. J Bacteriol 184:6830–6835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noma A, Sakaguchi Y, Suzuki T (2009) Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res 37:1335–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numata T, Ikeuchi Y, Fukai S et al (2006) Snapshots of tRNA sulphuration via an adenylated intermediate. Nature 442:419–424

    Article  CAS  PubMed  Google Scholar 

  • Pierrel F, Douki T, Fontecave M et al (2004) MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J Biol Chem 279:47555–47563

    Article  CAS  PubMed  Google Scholar 

  • Quax TE, Claassens NJ, Soll D et al (2015) Codon Bias as a Means to Fine-Tune Gene Expression. Mol Cell 59:149–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter V, Matschkal DM, Wagner M et al (2012) The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA. Nucleic Acids Res 40:6235–6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezgui VA, Tyagi K, Ranjan N et al (2013) tRNA tKUUU, tQUUG, and tEUUC wobble position modifications fine-tune protein translation by promoting ribosome A-site binding. Proc Natl Acad Sci U S A 110:12289–12294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Hernandez A, Spears JL, Gaston KW et al (2013) Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position. J Mol Biol 425:3888–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryals J, Hsu RY, Lipsett MN et al (1982) Isolation of single-site Escherichia coli mutants deficient in thiamine and 4-thiouridine syntheses: identification of a nuvC mutant. J Bacteriol 151:899–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasarman F, Antonicka H, Horvath R et al (2011) The 2-thiouridylase function of the human MTU1 (TRMU) enzyme is dispensable for mitochondrial translation. Hum Mol Genet 20:4634–4643

    Article  CAS  PubMed  Google Scholar 

  • Schara U, von Kleist-Retzow JC, Lainka E et al (2011) Acute liver failure with subsequent cirrhosis as the primary manifestation of TRMU mutations. J Inherit Metab Dis 34:197–201

    Article  PubMed  Google Scholar 

  • Schindelin H, Kisker C, Rajagopalan KV (2001) Molybdopterin from molybdenum and tungsten enzymes. Adv Protein Chem 58:47–94

    Article  CAS  PubMed  Google Scholar 

  • Schlieker CD, Van der Veen AG, Damon JR et al (2008) A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proc Natl Acad Sci U S A 105:18255–18260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz J, Chowdhury MM, Hanzelmann P et al (2008) The sulfurtransferase activity of Uba4 presents a link between ubiquitin-like protein conjugation and activation of sulfur carrier proteins. Biochemistry 47:6479–6489

    Article  CAS  PubMed  Google Scholar 

  • Settembre E, Begley TP, Ealick SE (2003) Structural biology of enzymes of the thiamin biosynthesis pathway. Curr Opin Struct Biol 13:739–747

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Proteau A, Villarroya M et al (2010) Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. PLoS Biol 8, e1000354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shigi N (2012) Posttranslational modification of cellular proteins by a ubiquitin-like protein in bacteria. J Biol Chem 287:17568–17577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigi N (2014) Biosynthesis and functions of sulfur modifications in tRNA. Front Genet 5:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shigi N, Suzuki T, Tamakoshi M et al (2002) Conserved bases in the TPsi C loop of tRNA are determinants for thermophile-specific 2-thiouridylation at position 54. J Biol Chem 277:39128–39135

    Article  CAS  PubMed  Google Scholar 

  • Shigi N, Sakaguchi Y, Suzuki T et al (2006a) Identification of two tRNA thiolation genes required for cell growth at extremely high temperatures. J Biol Chem 281:14296–14306

    Article  CAS  PubMed  Google Scholar 

  • Shigi N, Suzuki T, Terada T et al (2006b) Temperature-dependent biosynthesis of 2-thioribothymidine of Thermus thermophilus tRNA. J Biol Chem 281:2104–2113

    Article  CAS  PubMed  Google Scholar 

  • Shigi N, Sakaguchi Y, Asai S et al (2008) Common thiolation mechanism in the biosynthesis of tRNA thiouridine and sulphur-containing cofactors. EMBO J 27:3267–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sochacka E, Szczepanowski RH, Cypryk M et al (2015) 2-Thiouracil deprived of thiocarbonyl function preferentially base pairs with guanine rather than adenine in RNA and DNA duplexes. Nucleic Acids Res 43:2499–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan MA, Cannon JF, Webb FH et al (1985) Antisuppressor mutation in Escherichia coli defective in biosynthesis of 5-methylaminomethyl-2-thiouridine. J Bacteriol 161:368–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T (2005) Biosynthesis and function of tRNA wobble modifications. In: Grosjean H (ed) Fine-tuning of RNA functions by modification and editing. Springer, Heidelberg, Germany, pp 23–69

    Chapter  Google Scholar 

  • Tigano M, Ruotolo R, Dallabona C et al (2015) Elongator-dependent modification of cytoplasmic tRNALysUUU is required for mitochondrial function under stress conditions. Nucleic Acids Res 43:8368–8380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tukenmez H, Xu H, Esberg A et al (2015) The role of wobble uridine modifications in +1 translational frameshifting in eukaryotes. Nucleic Acids Res. doi:10.1093/nar/gkv832

    PubMed  PubMed Central  Google Scholar 

  • Tyagi K, Pedrioli PG (2015) Protein degradation and dynamic tRNA thiolation fine-tune translation at elevated temperatures. Nucleic Acids Res 43:4701–4712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umeda N, Suzuki T, Yukawa M et al (2005) Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. Implications for the molecular pathogenesis of human mitochondrial diseases. J Biol Chem 280:1613–1624

    Article  CAS  PubMed  Google Scholar 

  • Urbonavicius J, Qian Q, Durand JM et al (2001) Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 20:4863–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uusimaa J, Jungbluth H, Fratter C et al (2011) Reversible infantile respiratory chain deficiency is a unique, genetically heterogenous mitochondrial disease. J Med Genet 48:660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacher J, Grosjean H, Houssier C et al (1984) The effect of point mutations affecting Escherichia coli tryptophan tRNA on anticodon-anticodon interactions and on UGA suppression. J Mol Biol 177:329–342

    Article  CAS  PubMed  Google Scholar 

  • Van der Veen AG, Schorpp K, Schlieker C et al (2011) Role of the ubiquitin-like protein Urm1 as a noncanonical lysine-directed protein modifier. Proc Natl Acad Sci U S A 108:1763–1770

    Article  PubMed  PubMed Central  Google Scholar 

  • Vendeix FA, Murphy FV, Cantara WA et al (2012) Human tRNA(Lys3)(UUU) is pre-structured by natural modifications for cognate and wobble codon binding through keto-enol tautomerism. J Mol Biol 416:467–485

    Article  CAS  PubMed  Google Scholar 

  • Viscomi C, Bottani E, Zeviani M (2015) Emerging concepts in the therapy of mitochondrial disease. BBA-Bioenergetics 1847:544–557

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yan Q, Guan MX (2007) Deletion of the MTO2 gene related to tRNA modification causes a failure in mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. FEBS Lett 581:4228–4234

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Oshima T, Saneyoshi M et al (1974) Replacement of ribothymidine by 5-methyl-2-thiouridine in sequence GT psi C in tRNA of an extreme thermophile. FEBS Lett 43:59–63

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Shinma M, Oshima T et al (1976) Heat-induced stability of tRNA from an extreme thermophile, Thermus thermophilus. Biochem Biophys Res Commun 72:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Wei FY, Suzuki T, Watanabe S et al (2011) Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. J Clin Invest 121:3598–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei FY, Zhou B, Suzuki T et al (2015) Cdk5rap1-mediated 2-methylthio modification of mitochondrial tRNAs governs protein translation and contributes to myopathy in mice and humans. Cell Metab 21:428–442

    Article  CAS  PubMed  Google Scholar 

  • Wilson RK, Roe BA (1989) Presence of the hypermodified nucleotide N6-(delta 2-isopentenyl)-2-methylthioadenosine prevents codon misreading by Escherichia coli phenylalanyl-transfer RNA. Proc Natl Acad Sci U S A 86:409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie P, Wei FY, Hirata S et al (2013) Quantitative PCR measurement of tRNA 2-methylthio modification for assessing type 2 diabetes risk. Clin Chem 59:1604–1612

    Article  CAS  PubMed  Google Scholar 

  • Yasukawa T, Suzuki T, Ishii N et al (2001) Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J 20:4794–4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama S, Watanabe T, Murao K et al (1985) Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc Natl Acad Sci U S A 82:4905–4909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama S, Watanabe K, Miyazawa T (1987) Dynamic structures and functions of transfer ribonucleic acids from extreme thermophiles. Adv Biophys 23:115–147

    Article  CAS  PubMed  Google Scholar 

  • Yousef GM, Borgono CA, Michael IP et al (2004) Molecular cloning of a new gene which is differentially expressed in breast and prostate cancers. Tumour Biol 25:122–133

    Article  CAS  PubMed  Google Scholar 

  • Zeharia A, Shaag A, Pappo O et al (2009) Acute infantile liver failure due to mutations in the TRMU gene. Am J Hum Genet 85:401–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinshteyn B, Gilbert WV (2013) Loss of a conserved tRNA anticodon modification perturbs cellular signaling. PLoS Genet 9, e1003675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlotkin SH, Cherian MG (1988) Hepatic metallothionein as a source of zinc and cysteine during the first year of life. Pediatr Res 24:326–329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

I would like to thank all our collaborators, including Drs. Tsutomu Suzuki and Kimitsuna Watanabe (University of Tokyo), and Dr. Shigeyuki Yokoyama (RIKEN), as well as members of their laboratories. I would also like to thank Dr. Kenjyo Miyauchi (University of Tokyo) for comments on the manuscript. This work was supported in part by KAKENHI Grant (24570173) of the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Shigi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shigi, N. (2016). Sulfur Modifications in tRNA: Function and Implications for Human Disease. In: Jurga, S., Erdmann (Deceased), V., Barciszewski, J. (eds) Modified Nucleic Acids in Biology and Medicine. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-34175-0_3

Download citation

Publish with us

Policies and ethics