Advertisement

Regulated tRNA Cleavage in Biology and Medicine: Roles of tRNA Modifications

  • Shawn M. Lyons
  • Marta M. Fay
  • Pavel IvanovEmail author
Chapter
Part of the RNA Technologies book series (RNATECHN)

Abstract

Transfer RNAs (tRNAs) play a key role in translating genomic information and regulating gene expression. tRNA cleavage is an evolutionarily conserved phenomenon serving versatile functions in different organisms. The size distribution and abundance of tRNA-derived fragments suggests that tRNA modifications play important roles in mechanisms that regulate tRNA cleavage and degradation. Here, we discuss the importance of posttranscriptional modifications in controlling processing of tRNAs and describe the functions of tRNA-derived fragments in cell physiology and pathophysiology.

Keywords

tRNA Modifications Ribonuclease Angiogenin tRNA cleavage 

References

  1. Abbasi-Moheb L, Mertel S, Gonsior M et al (2012) Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am J Hum Genet 90:847–855PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abe T, Inokuchi H, Yamada Y et al (2014) tRNADB-CE: tRNA gene database well-timed in the era of big sequence data. Front Genet 5:114PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alexandrov A, Chernyakov I, Gu W et al (2006) Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell 21:87–96PubMedCrossRefGoogle Scholar
  5. Amitsur M, Levitz R, Kaufmann G (1987) Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J 6:2499–2503PubMedPubMedCentralGoogle Scholar
  6. Amitsur M, Morad I, Kaufmann G (1989) In vitro reconstitution of anticodon nuclease from components encoded by phage T4 and Escherichia coli CTr5X. EMBO J 8:2411–2415PubMedPubMedCentralGoogle Scholar
  7. Amitsur M, Morad I, Chapman-Shimshoni D et al (1992) HSD restriction-modification proteins partake in latent anticodon nuclease. EMBO J 11:3129–3134PubMedPubMedCentralGoogle Scholar
  8. Amitsur M, Benjamin S, Rosner R et al (2003) Bacteriophage T4-encoded Stp can be replaced as activator of anticodon nuclease by a normal host cell metabolite. Mol Microbiol 50:129–143PubMedCrossRefGoogle Scholar
  9. Anantharaman V, Koonin EV, Aravind L (2002) Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 30:1427–1464PubMedPubMedCentralCrossRefGoogle Scholar
  10. Anderson P, Ivanov P (2014) tRNA fragments in human health and disease. FEBS Lett 588:4297–4304PubMedPubMedCentralCrossRefGoogle Scholar
  11. Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150PubMedCrossRefGoogle Scholar
  12. Anderson P, Kedersha N (2009) Stress granules. Curr Biol 19:R397–398PubMedCrossRefGoogle Scholar
  13. Anderson P, Kedersha N, Ivanov P (2015) Stress granules, P-bodies and cancer. Biochim Biophys Acta 1849:861–870PubMedCrossRefGoogle Scholar
  14. Babiarz JE, Ruby JG, Wang Y et al (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22:2773–2785PubMedPubMedCentralCrossRefGoogle Scholar
  15. Baird TD, Wek RC (2012) Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 3:307–321PubMedPubMedCentralCrossRefGoogle Scholar
  16. Begley U, Dyavaiah M, Patil A et al (2007) Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol Cell 28:860–870PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blanco S, Dietmann S, Flores JV et al (2014) Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J 33:202–2039CrossRefGoogle Scholar
  18. Borek E, Baliga BS, Gehrke CW et al (1977) High turnover rate of transfer RNA in tumor tissue. Cancer Res 37:3362–3366PubMedGoogle Scholar
  19. Cai WM, Chionh YH, Hia F et al (2015) A platform for discovery and quantification of modified ribonucleosides in RNA: application to stress-induced reprogramming of tRNA modifications. Methods Enzymol 560:29–71PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cascales E, Buchanan SK, Duche D et al (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chakravarty AK, Subbotin R, Chait BT et al (2012) RNA ligase RtcB splices 3′-phosphate and 5′-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3′)pp(5′)G intermediates. Proc Natl Acad Sci U S A 109:6072–6077PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37:D93–97PubMedCrossRefGoogle Scholar
  23. Chan CT, Pang YL, Deng W et al (2012) Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun 3:37CrossRefGoogle Scholar
  24. Cho S, Beintema JJ, Zhang J (2005) The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics 85:08–220CrossRefGoogle Scholar
  25. Cole C, Sobala A, Lu C et al (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15:2147–2160PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cozen AE, Quartley E, Holmes AD et al (2015) ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat Methods 12:879–884PubMedPubMedCentralCrossRefGoogle Scholar
  27. Czech A, Wende S, Morl M et al (2013) Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet 9, e1003767PubMedPubMedCentralCrossRefGoogle Scholar
  28. Das AT, Klaver B, Berkhout B (1995) Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3Lys). J Virol 69:3090–3097PubMedPubMedCentralGoogle Scholar
  29. Desai KK, Cheng CL, Bingman CA et al (2014) A tRNA splicing operon: Archease endows RtcB with dual GTP/ATP cofactor specificity and accelerates RNA ligation. Nucleic Acids Res 42:3931–3942PubMedPubMedCentralCrossRefGoogle Scholar
  30. Deshpande RA, Shankar V (2002) Ribonucleases from T2 family. Crit Rev Microbiol 28:79–122PubMedCrossRefGoogle Scholar
  31. Dey S, Baird TD, Zhou D et al (2010) Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. J Biol Chem 285:33165–33174PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dhahbi JM, Spindler SR, Atamna H et al (2013) 5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics 14:298PubMedPubMedCentralCrossRefGoogle Scholar
  33. Donnelly N, Gorman AM, Gupta S et al (2013) The eIF2alpha kinases: their structures and functions. Cell Mol Life Sci 70:3493–3511PubMedCrossRefGoogle Scholar
  34. Durdevic Z, Schaefer M (2013) tRNA modifications: necessary for correct tRNA-derived fragments during the recovery from stress? Bioessays 35:323–327PubMedCrossRefGoogle Scholar
  35. El Yacoubi B, Bailly M, de Crecy-Lagard V (2012) Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Ann Rev Genet 46:69–95PubMedCrossRefGoogle Scholar
  36. Emara MM, Ivanov P, Hickman T et al (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285:10959–10968PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fett JW, Strydom DJ, Lobb RR et al (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24:5480–5486PubMedCrossRefGoogle Scholar
  38. Fraser CM, Gocayne JD, White O et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403PubMedCrossRefGoogle Scholar
  39. Fu H, Feng J, Liu Q et al (2009) Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 583:437–442PubMedCrossRefGoogle Scholar
  40. Gao X, Xu Z (2008) Mechanisms of action of angiogenin. Acta Biochim Biophys Sinica 40:619–624CrossRefGoogle Scholar
  41. Gebetsberger J, Polacek N (2013) Slicing tRNAs to boost functional ncRNA diversity. RNA Biol 10:1798–1806PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gebetsberger J, Zywicki M, Kunzi A et al (2012) tRNA-derived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii. Archaea 2012:260909PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108PubMedPubMedCentralCrossRefGoogle Scholar
  44. Giege R (2008) Toward a more complete view of tRNA biology. Nat Struct Mol Biol 15:1007–1014PubMedCrossRefGoogle Scholar
  45. Greenway MJ, Alexander MD, Ennis S et al (2004) A novel candidate region for ALS on chromosome 14q11.2. Neurology 63:1936–1938PubMedCrossRefGoogle Scholar
  46. Greenway MJ, Andersen PM, Russ C et al (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38:411–413PubMedCrossRefGoogle Scholar
  47. Gu C, Begley TJ, Dedon PC (2014) tRNA modifications regulate translation during cellular stress. FEBS Lett 588:4287–4296PubMedPubMedCentralCrossRefGoogle Scholar
  48. Haiser HJ, Karginov FV, Hannon GJ et al (2008) Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor. Nucleic Acids Res 36:732–741PubMedCrossRefGoogle Scholar
  49. Hanada T, Weitzer S, Mair B et al (2013) CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495:474–480PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hartmann A, Kunz M, Kostlin S et al (1999) Hypoxia-induced up-regulation of angiogenin in human malignant melanoma. Cancer Res 59:1578–1583PubMedGoogle Scholar
  51. Haussecker D, Huang Y, Lau A et al (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16:673–695PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ivanov P, Anderson P (2011) Stress-induced ribonucleases. In: Nicholson AW (ed) Ribonucleases, nucleic acids and molecular biology. Springer, Berlin, pp 115–119Google Scholar
  53. Ivanov P, Anderson P (2013) Post-transcriptional regulatory networks in immunity. Immunol Rev 253:253–272PubMedCrossRefGoogle Scholar
  54. Ivanov P, Emara MM, Villen J et al (2011a) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43:613–623PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ivanov P, Kedersha N, Anderson P (2011b) Stress puts TIA on TOP. Genes Dev 25:2119–2124PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ivanov P, O’Day E, Emara MM et al (2014) G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci U S A 111:18201–18206PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jablonowski D, Schaffrath R (2007) Zymocin, a composite chitinase and tRNase killer toxin from yeast. Biochem Soc Trans 35:1533–1537PubMedCrossRefGoogle Scholar
  58. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jiang Y, Meidler R, Amitsur M et al (2001) Specific interaction between anticodon nuclease and the tRNA(Lys) wobble base. J Mol Biol 305:377–388PubMedCrossRefGoogle Scholar
  60. Jiang Y, Blanga S, Amitsur M et al (2002) Structural features of tRNALys favored by anticodon nuclease as inferred from reactivities of anticodon stem and loop substrate analogs. J Biol Chem 277:3836–3841PubMedCrossRefGoogle Scholar
  61. Jochl C, Rederstorff M, Hertel J et al (2008) Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res 36:2677–2689PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kao RY, Jenkins JL, Olson KA et al (2002) A small-molecule inhibitor of the ribonucleolytic activity of human angiogenin that possesses antitumor activity. Proc Natl Acad Sci U S A 99:10066–10071PubMedPubMedCentralCrossRefGoogle Scholar
  63. Karaca E, Weitzer S, Pehlivan D et al (2014) Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157:636–650PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kaufmann G (2000) Anticodon nucleases. Trends Biochem Sci 25:70–74PubMedCrossRefGoogle Scholar
  65. Kawaji H, Nakamura M, Takahashi Y et al (2008) Hidden layers of human small RNAs. BMC Genomics 9:157PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kedersha N, Ivanov P, Anderson P (2013) Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 38:494–506PubMedCrossRefGoogle Scholar
  67. Keppetipola N, Jain R, Meineke B et al (2009) Structure-activity relationships in Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA 15:1036–1044PubMedPubMedCentralCrossRefGoogle Scholar
  68. Khan MA, Rafiq MA, Noor A et al (2012) Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet 90:856–863PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kirchner S, Ignatova Z (2015) Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16:98–112PubMedCrossRefGoogle Scholar
  70. Klungland A, Dahl JA (2014) Dynamic RNA modifications in disease. Curr Opin Genet Dev 26:47–52PubMedCrossRefGoogle Scholar
  71. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  73. Lee SR, Collins K (2005) Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J Biol Chem 280:42744–42749PubMedCrossRefGoogle Scholar
  74. Lee YS, Shibata Y, Malhotra A et al (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23:2639–2649PubMedPubMedCentralCrossRefGoogle Scholar
  75. Levitz R, Chapman D, Amitsur M et al (1990) The optional E. coli prr locus encodes a latent form of phage T4-induced anticodon nuclease. EMBO J 9:1383–1389PubMedPubMedCentralGoogle Scholar
  76. Li S, Hu GF (2012) Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol 227:2822–2826PubMedPubMedCentralCrossRefGoogle Scholar
  77. Li Y, Luo J, Zhou H et al (2008) Stress-induced tRNA-derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia. Nucleic Acids Res 36:6048–6055PubMedPubMedCentralCrossRefGoogle Scholar
  78. Li Z, Ender C, Meister G et al (2012) Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res 40:6787–6799PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liao JY, Ma LM, Guo YH et al (2010) Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One 5, e10563PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lu J, Esberg A, Huang B et al (2008) Kluyveromyces lactis gamma-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA. Nucleic Acids Res 36:1072–1080PubMedCrossRefGoogle Scholar
  81. Lu Z, Filonov GS, Noto JJ et al (2015) Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 21:1554–1565PubMedCrossRefGoogle Scholar
  82. Luhtala N, Parker R (2010) T2 Family ribonucleases: ancient enzymes with diverse roles. Trends Biochem Sci 35:253–259PubMedPubMedCentralCrossRefGoogle Scholar
  83. Machnicka MA, Milanowska K, Osman Oglou O et al (2013) MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res 41:D262–267PubMedCrossRefGoogle Scholar
  84. Machnicka MA, Olchowik A, Grosjean H et al (2014) Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol 11:1619–1629PubMedCrossRefGoogle Scholar
  85. Mair B, Popow J, Mechtler K et al (2013) Intron excision from precursor tRNA molecules in mammalian cells requires ATP hydrolysis and phosphorylation of tRNA-splicing endonuclease components. Biochem Soc Trans 41:831–837PubMedCrossRefGoogle Scholar
  86. Martens-Uzunova ES, Jalava SE, Dits NF et al (2012) Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 31:978–991PubMedCrossRefGoogle Scholar
  87. Martens-Uzunova ES, Olvedy M, Jenster G (2013) Beyond microRNA–novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Lett 340:201–211PubMedCrossRefGoogle Scholar
  88. Martinez FJ, Lee JH, Lee JE et al (2012) Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet 49:380–385PubMedPubMedCentralCrossRefGoogle Scholar
  89. Masaki H, Ogawa T (2002) The modes of action of colicins E5 and D, and related cytotoxic tRNases. Biochimie 84:433–438PubMedCrossRefGoogle Scholar
  90. Masaki H, Ogawa T, Tomita K et al (1997) Colicin E5 as a new type of cytotoxin, which cleaves a specific group of tRNAs. Nucleic Acids Symp Ser 37:287–288PubMedGoogle Scholar
  91. Maute RL, Schneider C, Sumazin P et al (2013) tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci U S A 110:1404–1409PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mei Y, Yong J, Liu H et al (2010) tRNA binds to cytochrome c and inhibits caspase activation. Mol Cell 37:668–678PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mishima E, Inoue C, Saigusa D et al (2014) Conformational change in transfer RNA is an early indicator of acute cellular damage. J Am Soc Nephrol 25:2316–2326PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mleczko AM, Celichowski P, Bakowska-Zywicka K (2014) Ex-translational function of tRNAs and their fragments in cancer. Acta Biochim Pol 61:211–216PubMedGoogle Scholar
  95. Morin RD, O’Connor MD, Griffith M et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621PubMedPubMedCentralCrossRefGoogle Scholar
  96. Nakamura M, Yamabe H, Osawa H et al (2006) Hypoxic conditions stimulate the production of angiogenin and vascular endothelial growth factor by human renal proximal tubular epithelial cells in culture. Nephrol Dial Transplant 21:1489–1495PubMedCrossRefGoogle Scholar
  97. Ng CL, Lang K, Meenan NA et al (2010) Structural basis for 16S ribosomal RNA cleavage by the cytotoxic domain of colicin E3. Nat Struct Mol Biol 17:1241–1246PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ogawa T, Inoue S, Yajima S et al (2006) Sequence-specific recognition of colicin E5, a tRNA-targeting ribonuclease. Nucleic Acids Res 34:6065–6073PubMedPubMedCentralCrossRefGoogle Scholar
  99. Olson KA, French TC, Vallee BL et al (1994) A monoclonal antibody to human angiogenin suppresses tumor growth in athymic mice. Cancer Res 54:4576–4579PubMedGoogle Scholar
  100. Olson KA, Fett JW, French TC et al (1995) Angiogenin antagonists prevent tumor growth in vivo. Proc Natl Acad Sci U S A 92:442–446PubMedPubMedCentralCrossRefGoogle Scholar
  101. Olson KA, Verselis SJ, Fett JW (1998) Angiogenin is regulated in vivo as an acute phase protein. Biochem Biophys Res Commun 242:480–483PubMedCrossRefGoogle Scholar
  102. Parisien M, Wang X, Pan T (2013) Diversity of human tRNA genes from the 1000-genomes project. RNA Biol 10:1853–1867PubMedPubMedCentralCrossRefGoogle Scholar
  103. Patil A, Chan CT, Dyavaiah M et al (2012a) Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications. RNA Biol 9:990–1001PubMedPubMedCentralCrossRefGoogle Scholar
  104. Patil A, Dyavaiah M, Joseph F et al (2012b) Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response. Cell Cycle 11:3656–3665PubMedPubMedCentralCrossRefGoogle Scholar
  105. Paushkin SV, Patel M, Furia BS et al (2004) Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 117:311–321PubMedCrossRefGoogle Scholar
  106. Pavon-Eternod M, Gomes S, Geslain R et al (2009) tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 37:7268–7280PubMedPubMedCentralCrossRefGoogle Scholar
  107. Pavon-Eternod M, Gomes S, Rosner MR et al (2013) Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA 19:461–466PubMedPubMedCentralCrossRefGoogle Scholar
  108. Pestova TV, Kolupaeva VG, Lomakin IB et al (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci U S A 98:7029–7036PubMedPubMedCentralCrossRefGoogle Scholar
  109. Phizicky EM, Alfonzo JD (2010) Do all modifications benefit all tRNAs? FEBS Lett 584:265–271PubMedPubMedCentralCrossRefGoogle Scholar
  110. Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24:1832–1860PubMedPubMedCentralCrossRefGoogle Scholar
  111. Pizzo E, Sarcinelli C, Sheng J et al (2013) Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival. J Cell Sci 126:4308–4319PubMedPubMedCentralCrossRefGoogle Scholar
  112. Popow J, Englert M, Weitzer S et al (2011) HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science 331:760–764PubMedCrossRefGoogle Scholar
  113. Popow J, Jurkin J, Schleiffer A et al (2014) Analysis of orthologous groups reveals archease and DDX1 as tRNA splicing factors. Nature 511:104–107PubMedPubMedCentralCrossRefGoogle Scholar
  114. Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284:17897–17901PubMedPubMedCentralCrossRefGoogle Scholar
  115. Raina M, Ibba M (2014) tRNAs as regulators of biological processes. Front Genet 5:171PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rezgui VA, Tyagi K, Ranjan N et al (2013) tRNA tKUUU, tQUUG, and tEUUC wobble position modifications fine-tune protein translation by promoting ribosome A-site binding. Proc Natl Acad Sci U S A 110:12289–12294PubMedPubMedCentralCrossRefGoogle Scholar
  117. Saikia M, Fu Y, Pavon-Eternod M et al (2010) Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs. RNA 16:1317–1327PubMedPubMedCentralCrossRefGoogle Scholar
  118. Saikia M, Krokowski D, Guan BJ et al (2012) Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem 287:42708–42725PubMedPubMedCentralCrossRefGoogle Scholar
  119. Saikia M, Jobava R, Parisien M et al (2014) Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol 34:2450–2463PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sarin LP, Leidel SA (2014) Modify or die?—RNA modification defects in metazoans. RNA Biol 11:1555–1567PubMedCrossRefGoogle Scholar
  121. Schaefer M, Pollex T, Hanna K et al (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 24:1590–1595PubMedPubMedCentralCrossRefGoogle Scholar
  122. Schaffer AE, Eggens VR, Caglayan AO et al (2014) CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 157:651–663PubMedPubMedCentralCrossRefGoogle Scholar
  123. Schutz K, Hesselberth JR, Fields S (2010) Capture and sequence analysis of RNAs with terminal 2′,3′-cyclic phosphates. RNA 16:621–631PubMedPubMedCentralCrossRefGoogle Scholar
  124. Shigematsu M, Kirino Y (2015) tRNA-derived short non-coding RNA as interacting partners of argonaute proteins. Gene Regul Syst Biol 9:27–33Google Scholar
  125. Sobala A, Hutvagner G (2011) Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdiscip Rev RNA 2:853–862PubMedCrossRefGoogle Scholar
  126. Sobala A, Hutvagner G (2013) Small RNAs derived from the 5′ end of tRNA can inhibit protein translation in human cells. RNA Biol 10:553–563PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745PubMedPubMedCentralCrossRefGoogle Scholar
  128. Sprinzl M, Vassilenko KS (2005) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 33:D139–140PubMedCrossRefGoogle Scholar
  129. Su D, Chan CT, Gu C et al (2014) Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat Protoc 9:828–841PubMedPubMedCentralCrossRefGoogle Scholar
  130. Suryanarayana T, Uppala JK, Garapati UK (2012) Interaction of cytochrome c with tRNA and other polynucleotides. Mol Biol Rep 39:9187–9191PubMedCrossRefGoogle Scholar
  131. Suzuki T, Nagao A, Suzuki T (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329PubMedCrossRefGoogle Scholar
  132. Tanaka N, Meineke B, Shuman S (2011) RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J Biol Chem 286:30253–30257PubMedPubMedCentralCrossRefGoogle Scholar
  133. Tavtigian SV, Simard J, Teng DH et al (2001) A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 27:172–180PubMedCrossRefGoogle Scholar
  134. Tello-Montoliu A, Patel JV, Lip GY (2006) Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost 4:1864–1874PubMedCrossRefGoogle Scholar
  135. Thompson DM, Parker R (2009a) The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185:43–50PubMedPubMedCentralCrossRefGoogle Scholar
  136. Thompson DM, Parker R (2009b) Stressing out over tRNA cleavage. Cell 138:215–219PubMedCrossRefGoogle Scholar
  137. Thompson DM, Lu C, Green PJ et al (2008) tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14:2095–2103PubMedPubMedCentralCrossRefGoogle Scholar
  138. Tsuji T, Sun Y, Kishimoto K et al (2005) Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res 65:1352–1360PubMedCrossRefGoogle Scholar
  139. Tuorto F, Liebers R, Musch T et al (2012) RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 19:900–905PubMedCrossRefGoogle Scholar
  140. Tyndall C, Meister J, Bickle TA (1994) The Escherichia coli prr region encodes a functional type IC DNA restriction system closely integrated with an anticodon nuclease gene. J Mol Biol 237:266–274PubMedCrossRefGoogle Scholar
  141. van Es MA, Schelhaas HJ, van Vught PW et al (2011) Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Ann Neurol 70:964–973PubMedCrossRefGoogle Scholar
  142. Wang X, He C (2014) Dynamic RNA modifications in posttranscriptional regulation. Mol Cell 56:5–12PubMedCrossRefGoogle Scholar
  143. Weitzer S, Martinez J (2007) The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature 447:222–226PubMedCrossRefGoogle Scholar
  144. Wu D, Yu W, Kishikawa H et al (2007) Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol 62:609–617PubMedPubMedCentralCrossRefGoogle Scholar
  145. Xiong Y, Steitz TA (2006) A story with a good ending: tRNA 3′-end maturation by CCA-adding enzymes. Curr Opin Struct Biol 16:12–17PubMedCrossRefGoogle Scholar
  146. Xu ZP, Tsuji T, Riordan JF, Hu GF (2002) The nuclear function of angiogenin in endothelial cells is related to rRNA production. Biochem Biophys Res Commun 294:287–292PubMedCrossRefGoogle Scholar
  147. Yamasaki S, Ivanov P, Hu GF et al (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185:35–42PubMedPubMedCentralCrossRefGoogle Scholar
  148. Yeung ML, Bennasser Y, Watashi K et al (2009) Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Res 37:6575–6586PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zheng G, Qin Y, Clark WC et al (2015) Efficient and quantitative high-throughput tRNA sequencing. Nat Meth 12:835–837CrossRefGoogle Scholar
  150. Zhou Y, Goodenbour JM, Godley LA et al (2009) High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma. Biochem Biophys Res Commun 385:160–164PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shawn M. Lyons
    • 1
    • 2
  • Marta M. Fay
    • 1
    • 2
  • Pavel Ivanov
    • 1
    • 2
    • 3
    Email author
  1. 1.Division of Rheumatology, Immunology and AllergyBrigham and Women’s HospitalBostonUSA
  2. 2.Department of MedicineHarvard Medical SchoolBostonUSA
  3. 3.The Broad Institute of Harvard and M.I.T.CambridgeUSA

Personalised recommendations