Advertisement

Compositional Design of Stochastic Timed Automata

  • Patricia Bouyer
  • Thomas Brihaye
  • Pierre CarlierEmail author
  • Quentin Menet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9691)

Abstract

In this paper, we study the model of stochastic timed automata and we target the definition of adequate composition operators that will allow a compositional approach to the design of stochastic systems with hard real-time constraints. This paper achieves the first step towards that goal. Firstly, we define a parallel composition operator that (we prove) corresponds to the interleaving semantics for that model; we give conditions over probability distributions, which ensure that the operator is well-defined; and we exhibit problematic behaviours when this condition is not satisfied. We furthermore identify a large and natural subclass which is closed under parallel composition. Secondly, we define a bisimulation notion which naturally extends that for continuous-time Markov chains. Finally, we importantly show that the defined bisimulation is a congruence w.r.t. the parallel composition, which is an expected property for a proper modular approach to system design.

Keywords

Composition Operator Parallel Composition Decidability Property Process Algebra Clock Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.) Automata, Languages and Programming. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Fix, L., Henzinger, T.A.: A determinizable class of timed automata. In: Dill, D.L. (ed.) Computer Aided Verification. LNCS, vol. 818, pp. 1–13. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(7), 524–541 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Baier, C., Hermanns, H., Katoen, J.-P., Wolf, V.: Comparative branching-time semantics for Markov chains. Inf. Comput. 200, 149–214 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Baier, C., Hermanns, H., Katoen, J.-P., Wolf, V.: Bisimulation and simulation relations for Markov chains. In: Proceedings of the Workshop Essays on Algebraic Process Calculi, vol. 162. ENTCS, pp. 73–78 (2006)Google Scholar
  7. 7.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  8. 8.
    Bertrand, N., Bouyer, P., Brihaye, T., Menet, Q., Baier, Ch., Größer, M., Jurdziński, M.: Stochastic timed automata. Logical Methods Comput. Sci. 10(4), 1–73 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bertrand, N., Bouyer, P., Brihaye, Th., Markey, N.: Quantitative model-checking of one-clock timed automata under probabilistic semantics. In: Proceedings of 5th International Conference on Quantitative Evaluation of Systems (QEST 2008). IEEE Computer Society Press (2008)Google Scholar
  10. 10.
    Bohnenkamp, H., D’Argenio, P., Hermanns, H., Katoen, J.-P.: MODEST: a compositional modeling formalism for hard and softly timed systems. IEEE Trans. Softw. Eng. 32(10), 812–830 (2006)CrossRefGoogle Scholar
  11. 11.
    Bouyer, P., Brihaye, T., Carlier, P., Menet, Q.: Compositional design of stochastic timed automata. Research Report LSV-15-06, Laboratoire Spécification et Vérification, ENS Cachan, France, 51 pages, December 2015Google Scholar
  12. 12.
    Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theor. Comput. Sci. 282(1), 5–32 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Brázdil, T., Hermanns, H., Krcál, J., Kretínský, J., Rehák, V.: Verification of open interactive Markov chains. In: Proceedings of the 31st Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012), vol. 18. LIPIcs, pp. 474–485. Springer (2012)Google Scholar
  14. 14.
    Brázdil, T., Krčál, J., Křetínský, J., Řehák, V.: Fixed-delay events in generalized semi-Markov processes revisited. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 140–155. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    D’Argenio, P., Katoen, J.-P.: A theory of stochastic systems Part I: Stochastic automata. Inf. Comput. 203(1), 1–38 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    D’Argenio, P., Katoen, J.-P.: A theory of stochastic systems part II: Process algebra. Inf. Comput. 203(1), 39–74 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Desharnais, J., Panangaden, P.: Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes. J. Logic Algebraic Program. 56, 99–115 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Glynn, P.W.: A GSMP formalism for discrete event systems. Proc. IEEE 77(1), 14–23 (1989)CrossRefGoogle Scholar
  19. 19.
    Hartmanns, A.: Modest - a unified language for quantitative models. In: Proceedings of the Forum on Specification and Design Languages (FDL 2012), pp. 44–51. IEEE Computer Society Press (2012)Google Scholar
  20. 20.
    Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  21. 21.
    Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality. LNCS, vol. 2428. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  22. 22.
    Hermanns, H., Katoen, J.-P.: The how and why of interactive Markov chains. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 311–337. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Hermanns, H., Krčál, J., Křetínský, J.: Compositional verification and optimization of interactive Markov chains. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 364–379. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Hermanns, H., Zhang, L.: From concurrency models to numbers - performance and dependability. In: Software and Systems Safety - Specification and Verification, vol. 30. NATO Science for Peace and Security Series, pp. 182–210. IOS Press (2011)Google Scholar
  25. 25.
    Stoelinga, M.: Fun with FireWire: a comparative study of formal verification methods applied to the IEEE 1394 root contention protocol. Formal Aspects Comput. 14(3), 328–337 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Thomas Brihaye
    • 2
  • Pierre Carlier
    • 1
    • 2
    Email author
  • Quentin Menet
    • 2
  1. 1.LSV, CNRS, ENS Cachan, Université Paris-SaclayCachanFrance
  2. 2.Université de MonsMonsBelgium

Personalised recommendations