Completing Partial Schedules for Open Shop with Unit Processing Times and Routing

  • René van BevernEmail author
  • Artem V. Pyatkin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9691)


Open Shop is a classical scheduling problem: given a set \(\mathcal J\) of jobs and a set \(\mathcal M\) of machines, find a minimum-makespan schedule to process each job \(J_i\in \mathcal J\) on each machine \(M_q\in \mathcal M\) for a given amount \(p_{iq}\) of time such that each machine processes only one job at a time and each job is processed by only one machine at a time. In Routing Open Shop, the jobs are located in the vertices of an edge-weighted graph \(\mathcal G=(V,E)\) whose edge weights determine the time needed for the machines to travel between jobs. The travel times also have a natural interpretation as sequence-dependent family setup times. Routing Open Shop is NP-hard for \(|V|=|\mathcal M|=2\). For the special case with unit processing times \(p_{iq}=1\), we exploit Galvin’s theorem about list-coloring edges of bipartite graphs to prove a theorem that gives a sufficient condition for the completability of partial schedules. Exploiting this schedule completion theorem and integer linear programming, we show that Routing Open Shop with unit processing times is solvable in Open image in new window  time, that is, fixed-parameter tractable parameterized by \(|V|+|\mathcal M|\). Various upper bounds shown using the schedule completion theorem suggest it to be likewise beneficial for the development of approximation algorithms.


NP-hard scheduling problem Fixed-parameter algorithm Edge list-coloring Sequence-dependent family or batch setup times 


  1. 1.
    Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Averbakh, I., Berman, O., Chernykh, I.: A \({\frac{6}{5}}\)-approximation algorithm for the two-machine routing open-shop problem on a two-node network. Eur. J. Oper. Res. 166(1), 3–24 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Averbakh, I., Berman, O., Chernykh, I.: The routing open-shop problem on a network: Complexity and approximation. Eur. J. Oper. Res. 173(2), 531–539 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bellman, R.: Dynamic programming treatment of the Travelling Salesman Problem. J. ACM 9(1), 61–63 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    van Bevern, R., Chen, J., Hüffner, F., Kratsch, S., Talmon, N., Woeginger, G.J.: Approximability and parameterized complexity of multicover by \(c\)-intervals. Inform. Process. Lett. 115(10), 744–749 (2015a)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    van Bevern, R., Komusiewicz, C., Sorge, M.: Approximation algorithms for mixed, windy, and capacitated arc routing problems. In: Proceedings of the 15th ATMOS. OASIcs, vol. 48. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2015b)Google Scholar
  7. 7.
    van Bevern, R., Mnich, M., Niedermeier, R., Weller, M.: Interval scheduling and colorful independent sets. J. Sched. 18, 449–469 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    van Bevern, R., Niedermeier, R., Sorge, M., Weller, M.: Complexity of arc routing problems. In: Arc Routing: Problems, Methods, and Applications. SIAM (2014)Google Scholar
  9. 9.
    van Bevern, R., Niedermeier, R., Suchý, O.: A parameterized complexity view on non-preemptively scheduling interval-constrained jobs: few machines, small looseness, and small slack. J. Sched. (in press, 2016). doi: 10.1007/s10951-016-0478-9
  10. 10.
    Bodlaender, H.L., Fellows, M.R.: W[2]-hardness of precedence constrained \(k\)-processor scheduling. Oper. Res. Lett. 18(2), 93–97 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Chernykh, I., Kononov, A., Sevastyanov, S.: Efficient approximation algorithms for the routing open shop problem. Comput. Oper. Res. 40(3), 841–847 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015)zbMATHCrossRefGoogle Scholar
  13. 13.
    Dorn, F., Moser, H., Niedermeier, R., Weller, M.: Efficient algorithms for Eulerian Extension and Rural Postman. SIAM J. Discrete Math. 27(1), 75–94 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013)zbMATHCrossRefGoogle Scholar
  15. 15.
    Fellows, M.R., McCartin, C.: On the parametric complexity of schedules to minimize tardy tasks. Theor. Comput. Sci. 298(2), 317–324 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  17. 17.
    Galvin, F.: The list chromatic index of a bipartite multigraph. J. Comb. Theory B 63(1), 153–158 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gonzalez, T., Sahni, S.: Open shop scheduling to minimize finish time. J. ACM 23(4), 665–679 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Gutin, G., Jones, M., Sheng, B.: Parameterized complexity of the k-Arc Chinese postman problem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 530–541. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Gutin, G., Jones, M., Wahlström, M.: Structural parameterizations of the mixed Chinese postman problem. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 668–679. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  21. 21.
    Gutin, G., Muciaccia, G., Yeo, A.: Parameterized complexity of \(k\)-Chinese Postman Problem. Theor. Comput. Sci. 513, 124–128 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gutin, G., Wahlström, M., Yeo, A.: Parameterized Rural Postman and Conjoining Bipartite Matching problems (2014). arXiv:1308.2599v4
  23. 23.
    Halldórsson, M.M., Karlsson, R.K.: Strip graphs: recognition and scheduling. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 137–146. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. SIAM 10(1), 196–210 (1962)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Hermelin, D., Kubitza, J.-M., Shabtay, D., Talmon, N., Woeginger, G.: Scheduling two competing agents when one agent has significantly fewer jobs. In: Proceedings of the 10th IPEC. LIPIcs, vol. 43, pp. 55–65. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2015)Google Scholar
  26. 26.
    Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Kononov, A.: \(O(\log n)\)-approximation for the routing open shop problem. RAIRO-Oper. Res. 49(2), 383–391 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Mnich, M., Wiese, A.: Scheduling and fixed-parameter tractability. Math. Program. 154(1–2), 533–562 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  31. 31.
    Pyatkin, A.V., Chernykh, I.D.: The Open Shop problem with routing in a two-node network and allowed preemption (in Russian). Diskretnyj Analiz i Issledovaniye Operatsij 19(3), 65–78 (2012). English translation in J. Appl. Ind. Math. 6(3), 346–354MathSciNetzbMATHGoogle Scholar
  32. 32.
    Serdyukov, A.I.: On some extremal by-passes in graphs (in Russian). Upravlyayemyye sistemy 17, 76–79 (1978). zbMATH 0475.90080MathSciNetzbMATHGoogle Scholar
  33. 33.
    Slivnik, T.: Short proof of Galvin’s Theorem on the list-chromatic index of a bipartite multigraph. Comb. Probab. Comput. 5, 91–94 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Sorge, M., van Bevern, R., Niedermeier, R., Weller, M.: A new view on Rural Postman based on Eulerian Extension and Matching. J. Discrete Alg. 16, 12–33 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Yu, W., Liu, Z., Wang, L., Fan, T.: Routing open shop and flow shop scheduling problems. Eur. J. Oper. Res. 213(1), 24–36 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Zhu, X., Wilhelm, W.E.: Scheduling and lot sizing with sequence-dependent setup: A literature review. IIE Trans. 38(11), 987–1007 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussian Federation
  2. 2.Sobolev Institute of MathematicsNovosibirskRussian Federation

Personalised recommendations