Skip to main content

The Word Problem for Omega-Terms over the Trotter-Weil Hierarchy

(Extended Abstract)

  • Conference paper
  • First Online:
Book cover Computer Science – Theory and Applications (CSR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9691))

Included in the following conference series:

  • 473 Accesses

Abstract

Over finite words, there is a tight connection between the quantifier alternation hierarchy inside two-variable first-order logic \(\mathsf {FO}^2\) and a hierarchy of finite monoids: the Trotter-Weil Hierarchy. The various ways of climbing up this hierarchy include Mal’cev products, deterministic and co-deterministic concatenation as well as identities of \(\omega \)-terms. We show that the word problem for \(\omega \)-terms over each level of the Trotter-Weil Hierarchy is decidable; this means, for every variety \(\varvec{\mathrm {V}}\) of the hierarchy and every identity \(u = v\) of \(\omega \)-terms, one can decide whether all monoids in \(\varvec{\mathrm {V}}\) satisfy \(u=v\). More precisely, for every fixed variety \(\varvec{\mathrm {V}}\), our approach yields nondeterministic logarithmic space (\(\text {NL}\)) and deterministic polynomial time algorithms, which are more efficient than straightforward translations of the NL-algorithms. From a language perspective, the word problem for \(\omega \)-terms is the following: for every language variety \(\mathcal {V}\) in the Trotter-Weil Hierarchy and every language variety \(\mathcal {W}\) given by an identity of \(\omega \)-terms, one can decide whether \(\mathcal {V} \subseteq \mathcal {W}\). This includes the case where \(\mathcal {V}\) is some level of the \(\mathsf {FO}^2\) quantifier alternation hierarchy. As an application of our results, we show that the separation problems for the so-called corners of the Trotter-Weil Hierarchy are decidable.

M. Kufleitner—The first author was supported by the German Research Foundation (DFG) under grants DI 435/5-2 and KU 2716/1-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that all statements remain valid if one assumes that M! is used to denote |M|!.

  2. 2.

    Usually, \(\pi \)-terms are referred to as \(\omega \)-terms. In this paper, however, we use \(\omega \) to denote the order type of the natural numbers. Therefore, we follow the approach of Perrin and Pin [17] and use \(\pi \) instead of \(\omega \).

  3. 3.

    The presented relations could also be defined by (condensed) rankers (as it is done in [11, 12]). Rankers were introduced by Weis and Immerman [26] who reused the turtle programs by Schwentick, Thérien and Vollmer [21]. Another concept related to condensed rankers is the unambiguous interval temporal logic by Lodaya, Pandya and Shah [13].

  4. 4.

    For finite monoids, \(\mathcal {D}\)-classes coincide with \(\mathcal {J}\)-classes; a \(\mathcal {D}\)-class is called regular if it contains an idempotent. A semigroup is called aperiodic (or group-free) if it has no divisor which is a nontrivial group.

  5. 5.

    Decidability for \(\varvec{\mathrm {DA}}\) is already known [19]. The proof, however, uses a fix point saturation, which is different from our approach.

References

  1. Almeida, J.: Finite semigroups: an introduction to a unified theory of pseudovarieties. In: dos Gomes Moreira da Cunha, G.M., da Silva, P.V.A., Pin, J.É. (eds.) Semigroups, Algorithms, Automata and Languages, pp. 3–64. World Scientific, Singapore (2002)

    Chapter  Google Scholar 

  2. Almeida, J., Zeitoun, M.: An automata-theoretic approach to the word problem for \(\omega \)-terms over R. Theor. Comput. Sci. 370(1), 131–169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic press, New York (1976)

    MATH  Google Scholar 

  4. Gerhard, J., Petrich, M.: Varieties of bands revisited. Proc. Lond. Math. Soc. 58(3), 323–350 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hall, T., Weil, P.: On radical congruence systems. Semigroup Forum 59(1), 56–73 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huschenbett, M., Kufleitner, M.: Ehrenfeucht-fraïssé games on omega-terms. In: Mayr, E.W., Portier, N. (eds.) STACS 2014, Proceedings. LIPIcs, vol. 25, pp. 374–385. Dagstuhl Publishing, Dagstuhl (2014)

    Google Scholar 

  7. Krohn, K., Rhodes, J.L., Tilson, B.: Homomorphisms and semilocal theory. In: Arbib, M.A. (ed.) Algebraic Theory of Machines, Languages, and Semigroups, pp. 191–231. Academic Press, New York (1968). Chap. 8

    Google Scholar 

  8. Kufleitner, M., Lauser, A.: The join levels of the trotter-weil hierarchy are decidable. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 603–614. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Kufleitner, M., Wächter, J.Ph.: The word problem for omega-terms over the Trotter-Weil hierarchy (2015). CoRR abs/1509.05364

    Google Scholar 

  10. Kufleitner, M., Weil, P.: On the lattice of sub-pseudovarieties of DA. Semigroup Forum 81, 243–254 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kufleitner, M., Weil, P.: The \({\sf FO}^2\) alternation hierarchy is decidable. In: Cégielski, P., Durand, A. (eds.) Proceedings. LIPIcs, CSL 2012, vol. 16, pp. 426–439. Dagstuhl Publishing, Dagstuhl (2012)

    Google Scholar 

  12. Kufleitner, M., Weil, P.: On logical hierarchies within \({\sf FO}^2\)-definable languages. Logical Methods Comput. Sci. 8(3), 1–30 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lodaya, K., Pandya, P., Shah, S.: Marking the chops: an unambiguous temporal logic. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) IFIP TCS 2008. IFIP, pp. 461–476. Springer, US (2008)

    Chapter  Google Scholar 

  14. McCammond, J.P.: Normal forms for free aperiodic semigroups. Int. J. Algebra Comput. 11(5), 581–625 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. McNaughton, R., Papert, S.: Counter-Free Automata. The MIT Press, Cambridge (1971)

    MATH  Google Scholar 

  16. Moura, A.: The word problem for \(\omega \)-terms over DA. Theor. Comput. Sci. 412(46), 6556–6569 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Perrin, D., Pin, J.É.: Infinite words, Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)

    Google Scholar 

  18. Pin, J.: Varieties of Formal Languages. North Oxford Academic Publishers Ltd, London (1986)

    Book  MATH  Google Scholar 

  19. Place, Th., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise testable and unambiguous languages. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 729–740. Springer, Heidelberg (2013)

    Google Scholar 

  20. Schützenberger, M.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schwentick, Th., Thérien, D., Vollmer, H.: Partially-ordered two-way automata: a new characterization of DA. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 239–250. Springer, Heidelberg (2002)

    Google Scholar 

  22. Tesson, P., Thérien, D.: Diamonds are forever: the variety DA. In: dos Gomes Moreira da Cunha, G.M., da Silva, P.V.A., Pin, J.É. (eds.) Semigroups, Algorithms, Automata and Languages, pp. 475–500. World Scientific, Singapore (2002)

    Chapter  Google Scholar 

  23. Thérien, D., Wilke, Th.: Over words, two variables are as powerful as one quantifier alternation. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing. pp. 234–240. ACM (1998)

    Google Scholar 

  24. Trotter, P., Weil, P.: The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue. Algebra Univers. 37(4), 491–526 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. van Rooijen, L., Zeitoun, M.: The separation problem for regular languages by piecewise testable languages (2013). CoRR abs/1303.2143

    Google Scholar 

  26. Weis, Ph., Immerman, N.: Structure theorem and strict alternation hierarchy for \({\sf FO}^2\) on words. Logical Methods Comput. Sci. 5(3), 1–23 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Philipp Wächter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kufleitner, M., Wächter, J.P. (2016). The Word Problem for Omega-Terms over the Trotter-Weil Hierarchy. In: Kulikov, A., Woeginger, G. (eds) Computer Science – Theory and Applications. CSR 2016. Lecture Notes in Computer Science(), vol 9691. Springer, Cham. https://doi.org/10.1007/978-3-319-34171-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34171-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34170-5

  • Online ISBN: 978-3-319-34171-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics