The Word Problem for Omega-Terms over the Trotter-Weil Hierarchy

(Extended Abstract)
  • Manfred Kufleitner
  • Jan Philipp WächterEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9691)


Over finite words, there is a tight connection between the quantifier alternation hierarchy inside two-variable first-order logic \(\mathsf {FO}^2\) and a hierarchy of finite monoids: the Trotter-Weil Hierarchy. The various ways of climbing up this hierarchy include Mal’cev products, deterministic and co-deterministic concatenation as well as identities of \(\omega \)-terms. We show that the word problem for \(\omega \)-terms over each level of the Trotter-Weil Hierarchy is decidable; this means, for every variety \(\varvec{\mathrm {V}}\) of the hierarchy and every identity \(u = v\) of \(\omega \)-terms, one can decide whether all monoids in \(\varvec{\mathrm {V}}\) satisfy \(u=v\). More precisely, for every fixed variety \(\varvec{\mathrm {V}}\), our approach yields nondeterministic logarithmic space (\(\text {NL}\)) and deterministic polynomial time algorithms, which are more efficient than straightforward translations of the NL-algorithms. From a language perspective, the word problem for \(\omega \)-terms is the following: for every language variety \(\mathcal {V}\) in the Trotter-Weil Hierarchy and every language variety \(\mathcal {W}\) given by an identity of \(\omega \)-terms, one can decide whether \(\mathcal {V} \subseteq \mathcal {W}\). This includes the case where \(\mathcal {V}\) is some level of the \(\mathsf {FO}^2\) quantifier alternation hierarchy. As an application of our results, we show that the separation problems for the so-called corners of the Trotter-Weil Hierarchy are decidable.


  1. 1.
    Almeida, J.: Finite semigroups: an introduction to a unified theory of pseudovarieties. In: dos Gomes Moreira da Cunha, G.M., da Silva, P.V.A., Pin, J.É. (eds.) Semigroups, Algorithms, Automata and Languages, pp. 3–64. World Scientific, Singapore (2002)CrossRefGoogle Scholar
  2. 2.
    Almeida, J., Zeitoun, M.: An automata-theoretic approach to the word problem for \(\omega \)-terms over R. Theor. Comput. Sci. 370(1), 131–169 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic press, New York (1976)zbMATHGoogle Scholar
  4. 4.
    Gerhard, J., Petrich, M.: Varieties of bands revisited. Proc. Lond. Math. Soc. 58(3), 323–350 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hall, T., Weil, P.: On radical congruence systems. Semigroup Forum 59(1), 56–73 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Huschenbett, M., Kufleitner, M.: Ehrenfeucht-fraïssé games on omega-terms. In: Mayr, E.W., Portier, N. (eds.) STACS 2014, Proceedings. LIPIcs, vol. 25, pp. 374–385. Dagstuhl Publishing, Dagstuhl (2014)Google Scholar
  7. 7.
    Krohn, K., Rhodes, J.L., Tilson, B.: Homomorphisms and semilocal theory. In: Arbib, M.A. (ed.) Algebraic Theory of Machines, Languages, and Semigroups, pp. 191–231. Academic Press, New York (1968). Chap. 8Google Scholar
  8. 8.
    Kufleitner, M., Lauser, A.: The join levels of the trotter-weil hierarchy are decidable. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 603–614. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Kufleitner, M., Wächter, J.Ph.: The word problem for omega-terms over the Trotter-Weil hierarchy (2015). CoRR abs/1509.05364Google Scholar
  10. 10.
    Kufleitner, M., Weil, P.: On the lattice of sub-pseudovarieties of DA. Semigroup Forum 81, 243–254 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kufleitner, M., Weil, P.: The \({\sf FO}^2\) alternation hierarchy is decidable. In: Cégielski, P., Durand, A. (eds.) Proceedings. LIPIcs, CSL 2012, vol. 16, pp. 426–439. Dagstuhl Publishing, Dagstuhl (2012)Google Scholar
  12. 12.
    Kufleitner, M., Weil, P.: On logical hierarchies within \({\sf FO}^2\)-definable languages. Logical Methods Comput. Sci. 8(3), 1–30 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lodaya, K., Pandya, P., Shah, S.: Marking the chops: an unambiguous temporal logic. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) IFIP TCS 2008. IFIP, pp. 461–476. Springer, US (2008)CrossRefGoogle Scholar
  14. 14.
    McCammond, J.P.: Normal forms for free aperiodic semigroups. Int. J. Algebra Comput. 11(5), 581–625 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    McNaughton, R., Papert, S.: Counter-Free Automata. The MIT Press, Cambridge (1971)zbMATHGoogle Scholar
  16. 16.
    Moura, A.: The word problem for \(\omega \)-terms over DA. Theor. Comput. Sci. 412(46), 6556–6569 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Perrin, D., Pin, J.É.: Infinite words, Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)Google Scholar
  18. 18.
    Pin, J.: Varieties of Formal Languages. North Oxford Academic Publishers Ltd, London (1986)CrossRefzbMATHGoogle Scholar
  19. 19.
    Place, Th., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise testable and unambiguous languages. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 729–740. Springer, Heidelberg (2013)Google Scholar
  20. 20.
    Schützenberger, M.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schwentick, Th., Thérien, D., Vollmer, H.: Partially-ordered two-way automata: a new characterization of DA. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 239–250. Springer, Heidelberg (2002)Google Scholar
  22. 22.
    Tesson, P., Thérien, D.: Diamonds are forever: the variety DA. In: dos Gomes Moreira da Cunha, G.M., da Silva, P.V.A., Pin, J.É. (eds.) Semigroups, Algorithms, Automata and Languages, pp. 475–500. World Scientific, Singapore (2002)CrossRefGoogle Scholar
  23. 23.
    Thérien, D., Wilke, Th.: Over words, two variables are as powerful as one quantifier alternation. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing. pp. 234–240. ACM (1998)Google Scholar
  24. 24.
    Trotter, P., Weil, P.: The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue. Algebra Univers. 37(4), 491–526 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    van Rooijen, L., Zeitoun, M.: The separation problem for regular languages by piecewise testable languages (2013). CoRR abs/1303.2143Google Scholar
  26. 26.
    Weis, Ph., Immerman, N.: Structure theorem and strict alternation hierarchy for \({\sf FO}^2\) on words. Logical Methods Comput. Sci. 5(3), 1–23 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut für Formale Methoden der InformatikUniversität StuttgartStuttgartGermany

Personalised recommendations