Skip to main content

On Approximating (Connected) 2-Edge Dominating Set by a Tree

  • Conference paper
  • First Online:
Book cover Computer Science – Theory and Applications (CSR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9691))

Included in the following conference series:

  • 487 Accesses

Abstract

The edge dominating set problem (EDS) is to compute a minimum edge set such that every edge is dominated by some edge in it. This paper considers a variant of EDS with extensions of multiple and connected dominations combined. In the b-EDS problem, each edge needs to be dominated b times. Connected EDS requires an edge dominating set to be connected while it has to form a tree in Tree Cover. Although each of EDS, b-EDS, and Connected EDS (or Tree Cover) has been well studied, each known to be approximable within 2 (or 8/3 for b-EDS in general), nothing is known when these extensions are imposed simultaneously on EDS unlike in the case of the (vertex) dominating set problem.

We consider Connected 2-EDS and 2-Tree Cover (i.e., a combination of 2-EDS and Tree Cover), and present a polynomial algorithm approximating each within 2. Moreover, it will be shown that the single tree computed is no larger than twice the optimum for (not necessarily connected) 2-EDS, thus also approximating 2-EDS equally well. It also implies that 2-EDS with clustering properties can be approximated within 2 as well.

This work is supported in part by the Kayamori Foundation of Informational Science Advancement and JSPS KAKENHI under Grant Number 26330010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alber, J., Betzler, N., Niedermeier, R.: Experiments on data reduction for optimal domination in networks. Ann. Oper. Res. 146, 105–117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arkin, E., Halldórsson, M., Hassin, R.: Approximating the tree and tour covers of a graph. Inform. Process. Lett. 47, 275–282 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armon, A.: On min-max r-gatherings. Theor. Comput. Sci. 412(7), 573–582 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker, B.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berger, A., Fukunaga, T., Nagamochi, H., Parekh, O.: Approximability of the capacitated \(b\)-edge dominating set problem. Theor. Comput. Sci. 385(1–3), 202–213 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Binkele-Raible, D., Fernau, H.: Enumerate and measure: improving parameter budget management. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 38–49. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected dominating set in sensor networks and MANETs. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, Supplement Vol. B, pp. 329–369. Springer, New York (2005)

    Chapter  Google Scholar 

  8. Chellali, M., Favaron, O., Hansberg, A., Volkmann, L.: \(k\)-domination and \(k\)-independence in graphs: a survey. Graphs Combin. 28(1), 1–55 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chlebík, M., Chlebíková, J.: Approximation hardness of edge dominating set problems. J. Comb. Optim. 11(3), 279–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cooper, C., Klasing, R., Zito, M.: Dominating sets in web graphs. In: Leonardi, S. (ed.) WAW 2004. LNCS, vol. 3243, pp. 31–43. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Dai, F., Wu, J.: On constructing \(k\)-connected \(k\)-dominating set in wireless ad hoc and sensor networks. J. Parallel Distrib. Comput. 66(7), 947–958 (2006)

    Article  MATH  Google Scholar 

  12. Du, D.-Z., Wan, P.-J.: Connected Dominating Set: Theory and Applications. Springer Optimization and Its Applications, vol. 77. Springer, New York (2013)

    Book  MATH  Google Scholar 

  13. Du, H., Ding, L., Wu, W., Kim, D., Pardalos, P., Willson, J.: Connected dominating set in wireless networks. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 783–833. Springer, New York (2013)

    Chapter  Google Scholar 

  14. Escoffier, B., Monnot, J., Paschos, V.T., Xiao, M.: New results on polynomial in approximability and fixed parameter approximability of edge dominating set. Theory Comput. Syst. 56(2), 330–346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fernau, H.: edge dominating set: efficient enumeration-based exact algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 142–153. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Fernau, H., Fomin, F.V., Philip, G., Saurabh, S.: The curse of connectivity: t-total vertex (edge) cover. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 34–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Fernau, H., Manlove, D.F.: Vertex and edge covers with clustering properties: complexity and algorithms. J. Discrete algorithms 7(2), 149–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fink, J.F., Jacobson, M.S.: \(n\)-domination in graphs. In: Graph Theory with Applications to Algorithms and Computer Science, pp. 283–300. Wiley (1985)

    Google Scholar 

  19. Fink, J.F., Jacobson, M.S.: On \(n\)-domination, \(n\)-dependence and forbidden subgraphs. In: Graph Theory with Applications to Algorithms and Computer Science, pp. 301–311. Wiley (1985)

    Google Scholar 

  20. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of combining branching and treewidth. Algorithmica 54(2), 181–207 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fujito, T.: On matchings and b-edge dominating sets: a 2-approximation algorithm for the 3-edge dominating set problem. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 206–216. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Gao, X., Zou, F., Kim, D., Du, D.-Z.: The latest researches on dominating problems in wireless sensor network. In: Handbook on Sensor Networks, pp. 197–226. World Scientific (2010)

    Google Scholar 

  23. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  24. Haynes, T., Hedetniemi, S., Slater, P. (eds.): Domination in Graphs, Advanced Topics. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  25. Haynes, T., Hedetniemi, S., Slater, P.: Fundamantals of Domination in Graphs. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  26. Hunt III., H., Marathe, M., Radhakrishnan, V., Ravi, S., Rosenkrantz, D., Stearns, R.: A unified approach to approximation schemes for NP- and PSPACE-hard problems for geometric graphs. In: Proceedings of the Second Annual European Symposium on Algorithms, pp. 424–435 (1994)

    Google Scholar 

  27. Kim, D., Gao, X., Zou, F., Du, D.-Z.: Construction of fault-tolerant virtual backbones in wireless networks. In: Handbook on Security and Networks, pp. 488–509. World Scientific (2011)

    Google Scholar 

  28. Lovász, L., Plummer, M.: Matching Theory. North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  29. Małafiejski, M., Żyliński, P.: Weakly cooperative guards in grids. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 647–656. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  30. Savage, C.: Depth-first search and the vertex cover problem. Inform. Process. Lett. 14(5), 233–235 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schmied, R., Viehmann, C.: Approximating edge dominating set in dense graphs. Theoret. Comput. Sci. 414(1), 92–99 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shang, W., Wan, P., Yao, F., Hu, X.: Algorithms for minimum \(m\)-connected \(k\)-tuple dominating set problem. Theoret. Comput. Sci. 381(13), 241–247 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shi, Y., Zhang, Y., Zhang, Z., Wu, W.: A greedy algorithm for the minimum \(2\)-connected \(m\)-fold dominating set problem. J. Comb. Optim., 1–16 (2014)

    Google Scholar 

  34. Thai, M.T., Zhang, N., Tiwari, R., Xu, X.: On approximation algorithms of \(k\)-connected \(m\)-dominating sets in disk graphs. Theor. Comput. Sci. 385(13), 49–59 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, Y., Li, Y.: Construction algorithms for \(k\)-connected \(m\)-dominating sets in wireless sensor networks. In: Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2008, pp. 83–90 (2008)

    Google Scholar 

  36. Xiao, M., Kloks, T., Poon, S.-H.: New parameterized algorithms for the edge dominating set problem. Theor. Comput. Sci. 511, 147–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhou, J., Zhang, Z., Wu, W., Xing, K.: A greedy algorithm for the fault-tolerant connected dominating set in a general graph. J. Comb. Optim. 28(1), 310–319 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Fujito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fujito, T., Shimoda, T. (2016). On Approximating (Connected) 2-Edge Dominating Set by a Tree. In: Kulikov, A., Woeginger, G. (eds) Computer Science – Theory and Applications. CSR 2016. Lecture Notes in Computer Science(), vol 9691. Springer, Cham. https://doi.org/10.1007/978-3-319-34171-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34171-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34170-5

  • Online ISBN: 978-3-319-34171-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics