On High-Quality Synthesis

  • Orna KupfermanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9691)


In the synthesis problem, we are given a specification \(\psi \) over input and output signals, and we synthesize a system that realizes \(\psi \): with every sequence of input signals, the system associates a sequence of output signals so that the generated computation satisfies \(\psi \). The above classical formulation of the problem is Boolean. First, correctness is Boolean: a computation satisfies the specification \(\psi \) or does not satisfy it. Then, other important and interesting measures like the size of the synthesized system, its robustness, price, and so on, are ignored. The paper surveys recent efforts to address and formalize different aspects of quality of synthesized systems. We start with multi-valued specification formalisms, which refine the notion of correctness and enable the designer to specify quality, and continue to the quality measure of sensing: the detail in which the inputs should be read in order to generate a correct computation. The first part is based on the articles [1, 2, 3]. The second part is based on [4, 5].


Model Check Markov Decision Process Linear Temporal Logic Synthesis Problem Truth Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 15–27. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 424–439. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality. J. ACM (2016, to appear)Google Scholar
  4. 4.
    Almagor, S., Kuperberg, D., Kupferman, O.: Regular sensing. In: Proceedings of the 34th Conference on Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 29, pp. 161–173. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2014)Google Scholar
  5. 5.
    Almagor, S., Kuperberg, D., Kupferman, O.: The sensing cost of monitoring and synthesis. In: Proceedings of the 35th Conference on Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 35, pp. 380–393. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2015)Google Scholar
  6. 6.
    Avni, G., Kupferman, O.: Synthesis from component libraries with costs. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 156–172. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Hofferek, G., Jobstmann, B., Könighofer, B., Könighofer, R.: Synthesizing robust systems. Acta Inf. 51(3–4), 193–220 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for synthesis. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 147–161. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing systems in probabilistic environments. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Church, A.: Logic, arithmetics, and automata. In: Proceedings of the International Congress of Mathematicians, 1962, pp. 23–35. Institut Mittag-Leffler (1963)Google Scholar
  12. 12.
    de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model checking discounted temporal properties. Theor. Comput. Sci. 345(1), 139–170 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  14. 14.
    Droste, M., Rahonis, G.: Weighted automata and weighted logics with discounting. Theor. Comput. Sci. 410(37), 3481–3494 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Droste, M., Vogler, H.: Weighted automata and multi-valued logics over arbitrary bounded lattices. Theor. Comput. Sci. 418, 14–36 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Faella, M., Legay, A., Stoelinga, M.: Model checking quantitative linear time logic. Electr. Notes Theor. Comput. Sci. 220(3), 61–77 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Grinstead, C., Snell, J.L.: 11:Markov chains. In: Introduction to Probability. American Mathematical Society (1997)Google Scholar
  19. 19.
    Kans, S.H.: Metrics and Models in Software Quality Engineering. Addison-Wesley Longman Publishing Co., Boston (2002)Google Scholar
  20. 20.
    Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable. Int. J. Algebra Comput. 4(3), 405–425 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kupferman, O., Lustig, Y., Vardi, M.Y., Yannakakis, M.: Temporal synthesis for bounded systems and environments. In: Proceedings of the 28th Symposium on Theoretical Aspects of Computer Science, pp. 615–626 (2011)Google Scholar
  22. 22.
    Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods Syst. Des. 19(3), 291–314 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kwiatkowska, M.Z.: Quantitative verification: models techniques and tools. In: ESEC/SIGSOFT FSE, pp. 449–458 (2007)Google Scholar
  24. 24.
    Mohri, M.: Finite-state transducers in language and speech processing. Comput. Linguist. 23(2), 269–311 (1997)MathSciNetGoogle Scholar
  25. 25.
    Moon, S., Lee, K., Lee, D.: Fuzzy branching temporal logic. IEEE Trans. Syst. Man Cybern. Part B 34(2), 1045–1055 (2004)CrossRefGoogle Scholar
  26. 26.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of the 16th ACM Symposium on Principles of Programming Languages, pp. 179–190 (1989)Google Scholar
  27. 27.
    Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput. 6, 495–511 (1994)CrossRefzbMATHGoogle Scholar
  29. 29.
    Spinellis, D.: Code Quality: The Open Source Perspective. Addison-Wesley Professional, Upper Saddle River (2006)Google Scholar
  30. 30.
    Vardi, M.Y.: From verification to synthesis. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, p. 2. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proceedings of the 1st IEEE Symposium on Logic in Computer Science, pp. 332–344 (1986)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringThe Hebrew UniversityJerusalemIsrael

Personalised recommendations