Skip to main content

Effects of Renal Denervation on Intermediate End Points

  • Chapter
  • First Online:
Interventional Therapies for Secondary and Essential Hypertension

Abstract

Sympathetic nervous system (SNS) activity constitutes an important pathway involved in the initiation and progression of the hypertensive disease. Sympathetic overactivity increases in parallel with hypertension stages, with acceleration of vascular, cardiac, and renal damage, while it is implicated in the pathogenesis of arrhythmias and glucose metabolism regulation. The effect of SNS modulation by means of renal denervation (RDN) on the intermediate end points related to the heart, kidney, arteries, arrhythmias, and glucose metabolism has been investigated in experimental and human studies. Although the majority of the studies suggest beneficial impact of RDN therapy on target organ damage, further well-designed studies are needed in order to fully understand the relation between neuromodulation and surrogate end point alterations in high-risk hypertensive patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BP:

Blood pressure

dRHTN:

Drug-resistant hypertension

LV:

Left ventricle

RDN:

Renal denervation

SNS:

Sympathetic nervous system

References

  1. Mancia G, Grassi G, Giannattasio C, Seravalle G (1999) Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 34:724–728

    Article  CAS  PubMed  Google Scholar 

  2. Tsioufis C, Kordalis A, Flessas D et al (2011) Pathophysiology of resistant hypertension: the role of sympathetic nervous system. Int J Hypertens 2011:642416

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tsioufis C, Dimitriadis K, Thomopoulos C, Doumas M, Papademetriou V, Stefanadis C (2014) Renal and cardiac effects of renal sympathetic denervation and carotid baroreceptor stimulation. Curr Vasc Pharmacol 12(1):55–62

    Article  CAS  PubMed  Google Scholar 

  4. Schlaich MP, Socratous F, Hennebry S et al (2009) Sympathetic activation in chronic renal failure. J Am Soc Nephrol 20:933–939

    Article  PubMed  Google Scholar 

  5. McArdle MJ, deGoma EM, Cohen DL, Townsend RR, Wilensky RL, Giri J (2016) Beyond blood pressure: percutaneous renal denervation for the management of sympathetic hyperactivity and associated disease states. J Am Heart Assoc 4(3). pii: e001415. doi:10.1161/JAHA.114.001415

  6. Grassi G, Quarti Trevano F, Seravalle G et al (2011) Early sympathetic activation in the initial stages of chronic renal failure. Hypertension 57:846–851

    Article  CAS  PubMed  Google Scholar 

  7. Rao F, Wessel J, Wen G, Zhang L et al (2007) Renal albumin excretion. Twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism. Hypertension 49:1015–1031

    Article  CAS  PubMed  Google Scholar 

  8. Vink EE, Blankestijn PJ (2012) Evidence and consequences of the central role of the kidneys in the pathophysiology of sympathetic hyperactivity. Front Phys 3:29, Epub 2012 Feb 20

    Article  Google Scholar 

  9. Tsioufis C, Papademetriou V, Dimitriadis K, Tsiachris D, Thomopoulos C, Park E, Hata C, Papalois A, Stefanadis C (2013) Catheter-based renal sympathetic denervation exerts acute and chronic effects on renalhemodynamics in swine. Int J Cardiol 168(2):987–992

    Article  PubMed  Google Scholar 

  10. Krum H, Schlaich M, Whitbourn R et al (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373:1275–1281

    Article  PubMed  Google Scholar 

  11. Krum H, Barman N, Schlaich M et al (2011) Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 57:911–917

    Article  CAS  Google Scholar 

  12. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376:1903–1909

    Article  PubMed  Google Scholar 

  13. Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT, Malaiapan Y, Papademetriou V (2013) Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J 34(28):2132–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsioufis CP, Papademetriou V, Dimitriadis KS, Kasiakogias A, Tsiachris D, Worthley MI, Sinhal AR, Chew DP, Meredith IT, Malaiapan Y, Thomopoulos C, Kallikazaros I, Tousoulis D, Worthley SG (2015) Catheter-based renal denervation for resistant hypertension: twenty-four month results of theEnligHTN I first-in-human study using a multi-electrode ablation system. Int J Cardiol 201:345–350

    Article  PubMed  Google Scholar 

  15. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL; SYMPLICITY HTN-3Investigators (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370(15):1393–1401

    Google Scholar 

  16. Ott C, Mahfoud F, Schmid A, Ditting T, Veelken R, Ewen S, Ukena C, Uder M, Böhm M, Schmieder RE (2014) Improvement of albuminuria after renal denervation. Int J Cardiol 173(2):311–315

    Article  PubMed  Google Scholar 

  17. Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, Linz D, Schmieder R, Rump LC, Kindermann I, Sobotka PA, Krum H, Scheller B, Schlaich M, Laufs U, Böhm M (2012) Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension 60(2):419–424

    Article  CAS  PubMed  Google Scholar 

  18. Lu D, Wang K, Liu Q, Wang S, Zhang Q, Shan Q (2016) Reductions of left ventricular mass and atrial size following renal denervation: a meta-analysis. Clin Res Cardiol. [Epub ahead of print]

    Google Scholar 

  19. Brandt M, Mahfoud F, Reda S et al (2012) Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol 59:901–909

    Article  PubMed  Google Scholar 

  20. Tsioufis C, Papademetriou V, Dimitriadis K, Tsiachris D, Thomopoulos C, Kasiakogias A, Kordalis A, Kefala A, Koutra E, Lau EO, Grassi G, Stefanadis C (2015) Effects of multielectrode renal denervation on cardiac and neurohumoral adaptations in resistant hypertension with cardiac hypertrophy: an EnligHTN I substudy. J Hypertens 33(2):346–353

    Article  CAS  PubMed  Google Scholar 

  21. Tsioufis C, Papademetriou V, Dimitriadis K, Kasiakogias A, Kordalis A, Andrikou E, Milkas A, Liatakis I, Oi-Yan Lau E, Tousoulis D (2016) Long-term effects of multielectrode renal denervation on cardiac adaptations in resistant hypertensive patients with left ventricular hypertrophy. J Hum Hypertens. doi:10.1038/jhh.2015.127. [Epub ahead of print]

    Google Scholar 

  22. Doltra A, Messroghli D, Stawowy P, Hassel JH, Gebker R, Leppänen O, Gräfe M et al (2014) Potential reduction of interstitial myocardial fibrosis with renal denervation. J Am Heart Assoc 3(6):e001353. doi:10.1161/JAHA.114.001353

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mahfoud F, Urban D, Teller D, Linz D, Stawowy P, Hassel JH et al (2014) Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur Heart J 35:2224–2231

    Article  PubMed  Google Scholar 

  24. Verloop WL, Vink EE, Spiering W, Blankestijn PJ, Doevendans PA, Bots ML, Vonken EJ, Voskuil M, Leiner T (2015) Effects of renal denervation on end organ damage in hypertensive patients. Eur J Prev Cardiol 22(5):558–567

    Article  PubMed  Google Scholar 

  25. Tsioufis C, Papademetriou V, Tsiachris D, Dimitriadis K, Kasiakogias A, Kordalis A, Antonakis V, Kefala A, Thomopoulos C, Kallikazaros I, Lau EO, Stefanadis C (2014) Drug-resistant hypertensive patients responding to multielectrode renal denervation exhibit improved heart rate dynamics and reduced arrhythmia burden. J Hum Hypertens 28(10):587–593

    Article  CAS  PubMed  Google Scholar 

  26. Kosiuk J, Hilbert S, Pokushalov E, Hindricks G, Steinberg JS, Bollmann A (2015) Renal denervation for treatment of cardiac arrhythmias: state of the art and future directions. J Cardiovasc Electrophysiol 26(2):233–238

    Article  PubMed  Google Scholar 

  27. Hering D, Lambert EA, Marusic P, Ika-Sari C, Walton AS, Krum H, Sobotka PA, Mahfoud F, Böhm M, Lambert GW, Esler MD, Schlaich MP (2013) Renal nerve ablation reduces augmentation index in patients with resistant hypertension. J Hypertens 31(9):1893–1900

    Article  CAS  PubMed  Google Scholar 

  28. Mahfoud F, Schlaich M, Kindermann I et al (2011) Catheter-based renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation 123:1940–1946

    Article  CAS  PubMed  Google Scholar 

  29. Pan T, Guo JH, Teng GJ (2015) Renal denervation: a potential novel treatment for type 2 diabetes mellitus? Medicine (Baltimore) 94(44):e1932

    Article  CAS  Google Scholar 

  30. Witkowski A, Prejbisz A, Florczak E, Kądziela J, Śliwiński P, Bieleń P, MichałowskaI I, Kabat M, Warchoł E, Januszewicz M, Narkiewicz K, Somers VK, Sobotka PA, Januszewicz A (2011) Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 58(4):559–565

    Article  CAS  PubMed  Google Scholar 

  31. Verloop WL, Spiering W, Vink EE, Beeftink MM, Blankestijn PJ, Doevendans PA, Voskuil M (2015) Denervation of the renal arteries in metabolic syndrome: the DREAMS-study. Hypertension 65(4):751–757

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos Dimitriadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dimitriadis, K., Tousoulis, D., Tsioufis, C. (2016). Effects of Renal Denervation on Intermediate End Points. In: Tsioufis, C., Schmieder, R., Mancia, G. (eds) Interventional Therapies for Secondary and Essential Hypertension. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-34141-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34141-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34140-8

  • Online ISBN: 978-3-319-34141-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics