Towards Scalable Federated Context-Aware Stream Reasoning

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9678)

Abstract

With the rising interest in internet connected devices and sensor networks, better known as the Internet of Things, data streams are becoming ubiquitous. Integration and processing of these data streams is challenging. Semantic Web technologies are able to deal with the variety of data but are not able to deal with the velocity of the data. An emerging research domain, called stream reasoning, tries to bridge the gap between traditional stream processing and semantic reasoning. Research in the past years has resulted in several prototyped RDF Stream Processors, each of them with its own features and application domain. They all cover querying over RDF streams but lack support for complex reasoning. This paper presents how adaptive stream processing and context-awareness can be used to enhance semantic reasoning over streaming data. The result is a federated context-aware architecture that allows to leverage reasoning capabilities on data streams produced by distributed sensor devices. The proposed solution is stated by use cases in pervasive health care and smart cities.

Keywords

Semantic stream processing Stream reasoning Context awareness Internet of Things (IoT) 

References

  1. 1.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols and applications. IEEE Commun. Surv. Tutorials 99, 1 (2015)Google Scholar
  2. 2.
    Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event processing and stream reasoning. In: Proceedings of the 20th International Conference on World Wide Web, pp. 635–644 (2011)Google Scholar
  3. 3.
    Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. VLDB J. 15(2), 121–142 (2006)CrossRefGoogle Scholar
  4. 4.
    Barbieri, D.F.: C-SPARQL: SPARQL for continuous querying. In: Proceedings of the 18th International Conference on WWW. vol. 427, pp. 1061–1062 (2009)Google Scholar
  5. 5.
    Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental reasoning on streams and rich background knowledge. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to streaming data sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 96–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Valle, E.D., Ceri, S., Harmelen, F.V., Fensel, D.: It’s a streaming world! Reasoning upon rapidly changing information. IEEE Intell. Syst. 6, 83–89 (2009)CrossRefGoogle Scholar
  8. 8.
    Forgy, C.L.: Rete: a fast algorithm for the many pattern/Many object pattern match problem. Artif. Intell. 19(1), 17–37 (1982)CrossRefGoogle Scholar
  9. 9.
    Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pattern matching over RDF data streams. In: Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems, pp. 58–68 (2012)Google Scholar
  10. 10.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Margara, A., Urbani, J., van Harmelen, F., Bal, H.: Streaming the web: reasoning over dynamic data. Web Seman. Sci. Serv. Agents World Wide Web 25, 24–44 (2014)CrossRefGoogle Scholar
  12. 12.
    Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: StreamRule: a nonmonotonic stream reasoning system for the semantic web. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 247–252. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Ren, Y., Pan, J., Zhao, Y.: Towards scalable reasoning on ontology streams via syntactic approximation. In: Proceedings of IWOD (2010)Google Scholar
  14. 14.
    Rinne, M., Nuutila, E., Törmä, S.: INSTANS: High-performance event processing with standard RDF and SPARQL. In: 11th International Semantic Web Conference ISWC 2012, vol. 914, pp. 101–104 (2012)Google Scholar
  15. 15.
    Shearer, R., Motik, B., Horrocks, I.: HermiT: A Highly-efficient OWL reasoner. In: OWLED, vol. 432 (2008)Google Scholar
  16. 16.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Web Seman. Sci. Serv. Agents World Wide Web 5, 51–53 (2007)CrossRefGoogle Scholar
  17. 17.
    Stuckenschmidt, H., Ceri, S., Della Valle, E., van Harmelen, F.: Towards expressive stream reasoning. In: Proceedings of the Dagstuhl Seminar on Semantic Aspects of Sensor Networks, pp. 1–14 (2010)Google Scholar
  18. 18.
    Sundmaeker, H., Guillemin, P., Friess, P.: Vision and Challenges for Realising the Internet of Things. Publications Office of the European Union, Luxembourg (2010)Google Scholar
  19. 19.
    Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Proceedings of the Third International Joint Conference pp. 292–297 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Information Technology (INTEC)Ghent University - iMindsGhentBelgium

Personalised recommendations