New Rough-Neuro-Fuzzy Approach for Regression Task in Incomplete Data

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 613)

Abstract

A fuzzy rule base is a crucial part of neuro-fuzzy systems. Data items presented to a neuro-fuzzy system activate rules in a rule base. For incomplete data the firing strength of the rules cannot be calculated. Some neuro-fuzzy systems impute the missing firing strength. This approach has been successfully applied. Unfortunately in some cases the imputed firing strength values are very low for all rules and data items are poorly recognized by the system. That may deteriorate the quality and reliability of elaborated results.

The paper presents a new method for handling missing values in neuro-fuzzy systems in a regression task. The new approach introduces a new imputation technique (imputation with group centres) to avoid very low firing strength for incomplete data items. It outperforms previous method (elaborates lower error rates), avoids numerical problems with very low firing strengths in all fuzzy rules of the system. The proposed systems elaborated interval answer without Karnik-Mendel algorithm. The paper is accompanied by numerical examples and statistical verification on real life data sets.

Keywords

Incomplete data Missing values Neuro-fuzzy system Rough fuzzy clustering 

References

  1. 1.
    Box, G.E.P., Jenkins, G.: Time Series Analysis, Forecasting and control. Holden Day, Incorporated, Oakland (1970)MATHGoogle Scholar
  2. 2.
    Cooke, M., Green, P., Josifovski, L., Vizinho, A.: Robust automatic speech recognition with missing and unreliable acoustic data. Speech Commun. 34, 267–285 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Czogała, E., Łęski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Series in Fuzziness and Soft Computing. Physica-Verlag, Springer, Heidelberg, New York (2000)CrossRefMATHGoogle Scholar
  4. 4.
    Gabriel, T.R., Berthold, M.R.: Missing values in fuzzy rule induction. In: SMC, pp. 1473–1476 (2005)Google Scholar
  5. 5.
    Grzymala-Busse, J.W.: A rough set approach to data with missing attribute values. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 58–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Himmelspach, L., Conrad, S.: Fuzzy clustering of incomplete data based on cluster dispersion. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 59–68. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132, 195–220 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Korytkowski, M., Nowicki, R., Scherer, R., Rutkowski, L.: Ensemble of rough-neuro-fuzzy systems for classification with missing features. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2008 (IEEE World Congress on Computational Intelligence), Hong Kong, pp. 1745–1750, June 2008Google Scholar
  9. 9.
    Mackey, M.C., Glass, L.: Oscillation and Chaos in physiological control systems. Science 197(4300), 287–289 (1977)CrossRefGoogle Scholar
  10. 10.
    Matyja, A., Simiński, K.: Comparison of algorithms for clustering incomplete data. Found. Comput. Decis. Sci. 39(2), 107–127 (2014)MATHGoogle Scholar
  11. 11.
    Nowicki, R.: Rough-neuro-fuzzy system with MICOG defuzzification. In: 2006 IEEE International Conference on Fuzzy Systems, Vancouver, Canada, pp. 1958–1965 (2006)Google Scholar
  12. 12.
    Nowicki, R.: On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data. IEEE Trans. Knowl. Data Eng. 20(9), 1239–1253 (2008)CrossRefGoogle Scholar
  13. 13.
    Nowicki, R.K.: Rough-neuro-fuzzy structures for classification with missing data. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(6), 1334–1347 (2009)CrossRefGoogle Scholar
  14. 14.
    Nowicki, R.K.: On classification with missing data using rough-neuro-fuzzy systems. Int. J. Appl. Math. Comput. Sci. 20(1), 55–67 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Nowicki, R.K., Korytkowski, M., Scherer, R., Nowak, B.A.: Design methodology for rough-neuro-fuzzy classification with missing data. In: 2015 IEEE Symposium Series on Computational Intelligence, pp. 1650–1657 (2015)Google Scholar
  16. 16.
    Renz, C., Rajapakse, J.C., Razvi, K., Liang, S.K.C.: Ovarian cancer classification with missing data. In: Proceedings of the 9th International Conference on Neural Information Processing, ICONIP 2002, vol. 2, pp. 809–813, Singapore (2002)Google Scholar
  17. 17.
    Sikora, M., Simiński, K.: Comparison of incomplete data handling techniques for neuro-fuzzy systems. Comput. Sci. 15(4), 441–458 (2014)CrossRefGoogle Scholar
  18. 18.
    Sikora, M., Krzystanek, Z., Bojko, B., Śpiechowicz, K.: Application of a hybrid method of machine learning for description and on-line estimation of methane hazard in mine workings. J. Min. Sci. 47(4), 493–505 (2011)CrossRefGoogle Scholar
  19. 19.
    Simiński, K.: Neuro-rough-fuzzy approach for regression modelling from missing data. Int. J. Appl. Math. Comput. Sci. 22(2), 461–476 (2012)MATHGoogle Scholar
  20. 20.
    Simiński, K.: Clustering with missing values. Fundamenta Informaticae 123(3), 331–350 (2013)MATHGoogle Scholar
  21. 21.
    Simiński, K.: Rough subspace neuro-fuzzy system. Fuzzy Sets Syst. 269, 30–46 (2015). http://www.sciencedirect.com/science/article/pii/S0165011414003108 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Siminski, K.: Imputation of missing values by inversion of fuzzy neuro-system. In: Gruca, A., Brachman, S., Czachórski, T. (eds.) Man-Machine Interactions 4. AISC, pp. 573–582. Springer International Publishing, Heidelberg (2016)CrossRefGoogle Scholar
  23. 23.
    Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)CrossRefGoogle Scholar
  24. 24.
    Zhang, S.: Shell-neighbor method and its application in missing data imputation. Appl. Intell. 35(1), 123–133 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations