Skip to main content

Spatial Logic and Spatial Model Checking for Closure Spaces

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9700))

Abstract

Spatial aspects of computation are increasingly relevant in Computer Science, especially in the field of collective adaptive systems and when dealing with systems distributed in physical space. Traditional formal verification techniques are well suited to analyse the temporal evolution of concurrent systems; however, properties of space are typically not explicitly taken into account. This tutorial provides an introduction to recent work on a topology-inspired approach to formal verification of spatial properties depending upon (physical) space. A logic is presented, stemming from the tradition of topological interpretations of modal logics, dating back to earlier logicians such as Tarski, where modalities describe neighbourhood. These topological definitions are lifted to the more general setting of closure spaces, also encompassing discrete, graph-based structures. The present tutorial illustrates the extension of the framework with a spatial surrounded operator, leading to the spatial logic for closure spaces SLCS, and its combination with the temporal logic CTL, leading to STLCS. The interplay of space and time permits one to define complex spatio-temporal properties. Both for the spatial and the spatio-temporal fragment efficient model-checking algorithms have been developed and their use on a number of case studies and examples is illustrated.

Research partially funded by EU project QUANTICOL (nr. 600708).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    When recovering the definition of a topological space via open sets from the Kuratowski definition, it is noteworthy that the preservation of binary unions is sufficient to prove that arbitrary unions of open sets are open.

  2. 2.

    A minimal neighbourhood of x is a set that is a neighbourhood of x and is included in all other neighbourhoods of x.

  3. 3.

    We leave open the possibility to change this notion, in chosen classes of closure spaces, practically making our theory dependent on such choice. The theoretical question of finding a uniform notion of path is left for future work.

  4. 4.

    This notion of neighbourhood is also known as the von Neumann neighbourhood of radius 1.

  5. 5.

    Web site: http://www.github.com/vincenzoml/topochecker.

  6. 6.

    See http://ocaml.org.

  7. 7.

    Actually one colour (yellow) could have been used, but in order to show multiple verification results combined in one picture, the orange points show the points that are yellow but that also satisfy the second property.

  8. 8.

    See http://octave.sourceforge.net/.

  9. 9.

    Note that the results may involve the same points, in which case the later result overwrites the previous result.

  10. 10.

    Pisa: http://www.pisamo.it, Hangzhou: http://www.publicbike.net; Paris: http://www.velib.paris.fr, London: https://tfl.gov.uk/modes/cycling/santander-cycles.

  11. 11.

    See also [9].

  12. 12.

    See, e.g. http://bikes.oobrien.com/london.

  13. 13.

    The results can be reproduced using the data and scripts, provided with the source code of the tool.

  14. 14.

    The tool is a global model checker, therefore it is able to produce a graph for each state of the model, related to the truth value of formulas in that particular state, even if we only show results related to one specific state.

  15. 15.

    More than one time step can be required. This can be achieved by repeated nesting of the EX operator. We did not do so for the sake of clarity in Fig. 23.

  16. 16.

    We use artificial data for the sake of simplicity, but usage of the approach does not differ on real data.

References

  1. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  2. Anderson, S., Bredche, N., Eiben, A.E., Kampis, G., van Steen, M.: Adaptive Collective Systems: Herding Black Sheep. BookSprints (2013)

    Google Scholar 

  3. Aydin Gol, E., Bartocci, E., Belta, C.: A formal methods approach to pattern synthesis in reaction diffusion systems. In: Proceedings of the CDC (2014)

    Google Scholar 

  4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  5. Bartocci, E., Bortolussi, L., Milios, D., Nenzi, L., Sanguinetti, G.: studying emergent behaviours in morphogenesis using signal spatio-temporal logic. In: Abate, A., Safranek, D., et al. (eds.) HSB 2015. LNCS, vol. 9271, pp. 156–172. Springer, Switzerland (2015). doi:10.1007/978-3-319-26916-0_9

    Chapter  Google Scholar 

  6. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal properties for stochastic models. In: HSB. EPTCS, vol. 125, pp. 3–19 (2013)

    Google Scholar 

  7. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  9. Borgnat, P., Abry, P., Flandrin, P., Robardet, C., Rouquier, J.B., Fleury, E.: Shared bicycles in a city: a signal processing and data analysis perspective. Adv. Complex Syst. 14(3), 415–438 (2011)

    Article  Google Scholar 

  10. Bortolussi, L., Hillston, J.: Model checking single agent behaviours by fluid approximation. Inf. Comput. 242, 183–226 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013). http://www.sciencedirect.com/science/article/pii/S0166531613000023

    Article  Google Scholar 

  12. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients. In: Proceedings of the 30th SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2000), pp. 365–377 (2000)

    Google Scholar 

  13. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: On spatio-temporal model-checking of vehicular movement in transport systems - preliminary version. Technical report TR-QC-02-2016, QUANTICOL (2016)

    Google Scholar 

  14. Ciancia, V., Gilmore, S., Latella, D., Loreti, M., Massink, M.: Data verification for collective adaptive systems: spatial model-checking of vehicle location data. In: Eighth IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASOW 2014, London, United Kingdom, 8–12 September, 2014, pp. 32–37. IEEE Computer Society (2014). http://dx.doi.org/10.1109/SASOW.2014.16

  15. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental spatio-temporal model checker. In: Bianculli, D., et al. (eds.) SEFM 2015 Workshops. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). doi:10.1007/978-3-662-49224-6_24. Extended version of QC-TR- 10-2014, http://milner.inf.ed.ac.uk/wiki/pages/J8N4c8/QUANTICOLTechnical Reports.html

    Chapter  Google Scholar 

  16. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. Technical report TR-QC-06-2014, QUANTICOL (2014). http://blog.inf.ed.ac.uk/quanticol/technical-reports/

    Google Scholar 

  17. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014)

    Google Scholar 

  18. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for closure spaces. (submitted, 2016)

    Google Scholar 

  19. Ciancia, V., Latella, D., Massink, M., Paškauskas, R.: Exploring spatio-temporal properties of bike-sharing systems. In: Beal, J., Hillston, J., Viroli, M. (eds.) Spatial and COllective PErvasive Computing Systems. Workshop at IEEE SASO 2015, MIT, Cambridge, MA, USA, 21 September, 2015, pp. 74–79. IEEE Computer Society Press, Cambridge (2015). doi:10.1109/SASOW.2015.17

  20. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge (2001). http://books.google.de/books?id=Nmc4wEaLXFEC

    Book  Google Scholar 

  21. De Maio, P.: Bike-sharing: its history, impacts, models of provision, and future. J. Public Transp. 12(4), 41–56 (2009)

    Article  Google Scholar 

  22. De Nicola, R., Katoen, J.P., Latella, D., Loreti, M., Massink, M.: Model checking mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fishman, E., Washington, S., Haworth, N.L.: Bike share’s impact on car use: evidence from the United States, Great Britain, and Australia. In: Proceedings of the 93rd Annual Meeting of the Transportation Research Board (2014)

    Google Scholar 

  24. Froehlich, J., Neumann, J., Oliver, N.: Sensing and predicting the pulse of the city through shared bicycling. In: IJCAI, pp. 1420–1426 (2009)

    Google Scholar 

  25. Galpin, V.: Spatial representations and analysis techniques. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 120–155. Springer, Switzerland (2016)

    Google Scholar 

  26. Galton, A.: A generalized topological view of motion in discrete space. Theor. Comput. Sci. 305(1–3), 111–134 (2003). http://www.sciencedirect.com/science/article/pii/S0304397502007016

    Article  MathSciNet  MATH  Google Scholar 

  27. Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999). http://dx.doi.org/10.1007/3-540-48384-5_17

    Google Scholar 

  28. Grandis, M.: Directed Algebraic Topology: Models of Non-Reversible Worlds. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  29. Haghighi, I., Jones, A., Kong, J.Z., Bartocci, E., Gros, R., Belta, C.: SpaTeL: a novel spatial-temporal logic and its applications to networked systems. In: Proceedings of the HSCC (2015)

    Google Scholar 

  30. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford Logic Guides, vol. 1. Clarendon Press, Oxford (2002). http://opac.inria.fr/record=b1107183. autre tirage: 2008

    MATH  Google Scholar 

  31. Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic + temporal logic = ? In: Aiello et al. [1], pp. 497–564

    Google Scholar 

  32. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approximated model-checking for self-organising coordination. Sci. Comput. Program. 110, 23–50 (2015)

    Article  Google Scholar 

  33. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  34. Massink, M., Paškauskas, R.: Model-based assessment of aspects of user-satisfaction in bicycle sharing systems. In: Sotelo Vazquez, M., Olaverri Monreal, C., Miller, J., Broggi, A. (eds.) 18th IEEE International Conference on Intelligent Transportation Systems, pp. 1363–1370. IEEE Computer Society Press (2015). doi:10.1109/ITSC.2015.224

  35. Midgley, P.: Bicycle-sharing schemes: enhancing sustainable mobility in urban areas. In: 19th Session of the Commission on Sustainable Development. CSD19/2011/BP8, United Nations (2011)

    Google Scholar 

  36. Nenzi, L., Bortolussi, L.: Specifying and monitoring properties of stochastic spatio-temporal systems in signal temporal logic. In: Haviv, M., Knottenbelt, W.J., Maggi, L., Miorandi, D. (eds.) 8th International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2014, ICST, Bratislava, Slovakia, 9–11 December, 2014. http://dx.doi.org/10.4108/icst.valuetools.2014.258183

  37. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Switzerland (2015). http://dx.doi.org/10.1007/978-3-319-23820-3_2

    Chapter  Google Scholar 

  38. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS 2002), Copenhagen, Denmark, 22–25 July 2002, pp. 55–74. IEEE Computer Society (2002). http://dx.doi.org/10.1109/LICS.2002.1029817

  39. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237(641), 37–72 (1952). doi:10.1098/rstb.1952.0012

    Article  Google Scholar 

  40. van Benthem, J., Bezhanishvili, G.: Modal Logics of Space. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors like to thank Luca Bortolussi, Stephen Gilmore, Gianluca Grilletti, Laura Nenzi and Rytis Paškauskas who are involved in the Quanticol project and who are co-authors of the various articles on which this tutorial has been based. We like to thank Ezio Bartocci for sharing with us an earlier Matlab version of the Turing model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieke Massink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ciancia, V., Latella, D., Loreti, M., Massink, M. (2016). Spatial Logic and Spatial Model Checking for Closure Spaces. In: Bernardo, M., De Nicola, R., Hillston, J. (eds) Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems. SFM 2016. Lecture Notes in Computer Science(), vol 9700. Springer, Cham. https://doi.org/10.1007/978-3-319-34096-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34096-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34095-1

  • Online ISBN: 978-3-319-34096-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics