Advertisement

Output-Feedback Tracking Control for Polynomial Fuzzy Model-Based Control Systems

  • Hak-Keung LamEmail author
Chapter
  • 646 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 64)

Abstract

This chapter considers a tracking problem for polynomial-fuzzy model-based control systems. An output-feedback polynomial fuzzy controller is employed to drive the system outputs to follow a reference trajectory. SOS-based stability conditions are obtained to determine the system stability and synthesize the controller where the tracking performance satisfies an \(H_\infty \) performance index governing the tracking error. Simulation examples are presented to verify the analysis results and show that the output-feedback polynomial fuzzy controller is able to handle the tracking control problem well.

Keywords

Fuzzy Model Fuzzy Controller Tracking Control Feedback Gain Inverted Pendulum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lee, T.C., Song, K.T., Lee, C.H., Teng, C.C.: Tracking control of unicycle-modeled mobile robots using a saturation feedback controller. IEEE Trans. Control Syst. Technol. 9(2), 305–318 (2001)CrossRefGoogle Scholar
  2. 2.
    Lee, T.H., Lam, H.K., Leung, F.H.F., Tam, P.K.S.: A practical fuzzy logic controller for the path tracking of wheeled mobile robots. IEEE Control Syst. Mag. 23(2), 60–65 (2003)CrossRefGoogle Scholar
  3. 3.
    Li, T.S., Chang, S.J., Tong, W.: Fuzzy target tracking control of autonomous mobile robots by using infrared sensors. IEEE Trans. Fuzzy Syst. 12(4), 491–501 (2004)CrossRefGoogle Scholar
  4. 4.
    Liao, F., Wang, J.L., Yang, G.H.: Reliable robust flight tracking control: an LMI approach. IEEE Trans. Control Syst. Technol. 10(1), 76–89 (2002)CrossRefGoogle Scholar
  5. 5.
    Pettersen, K.Y., Nijmeijer, H.: Underactuated ship tracking control: theory and experiments. Int. J. Control 74(14), 1435–1446 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jiang, Z.P.: Global tracking control of underactuated ships by Lyapunov’s direct method. Automatica 38(2), 301–309 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lefeber, E., Pettersen, K.Y., Nijmeijer, H.: Tracking control of an underactuated ship. IEEE Trans. Control Syst. Technol. 11(1), 52–61 (2003)CrossRefGoogle Scholar
  8. 8.
    Zhu, G., Dessaint, L.A., Akhrif, O., Kaddouri, A.: Speed tracking control of a permanent-magnet synchronous motor with state and load torque observer. IEEE Trans. Ind. Electron. 47(2), 346–355 (2000)CrossRefGoogle Scholar
  9. 9.
    Kwon, D.S., Book, W.J.: A time-domain inverse dynamic tracking control of a single-link flexible manipulator. J. Dyn. Syst. Meas. Control 116(2), 193–200 (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Tseng, C.S., Chen, B.S., Uang, H.J.: Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model. IEEE Trans. Fuzzy Syst. 9(3), 381–392 (2001)CrossRefGoogle Scholar
  11. 11.
    Tseng, C.S.: Model-reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with time-delay. IEEE Trans. Fuzzy Syst. 14(1), 58–70 (2006)CrossRefGoogle Scholar
  12. 12.
    Lam, H.K., Seneviratne, L.D.: Tracking control of sampled-data fuzzy-model-based control systems. IET Control Theor. Appl. 3(1), 56–67 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lam, H.K., Li, H.: Output-feedback tracking control for polynomial fuzzy-model-based control systems. IEEE Trans. Ind. Electron. 60(12), 5830–5840 (2013)CrossRefGoogle Scholar
  14. 14.
    Lo, J.C., Lin, M.L.: Robust H\(_\infty \) nonlinear control via fuzzy static output feedback. IEEE Trans. Syst. Man. Cybern. Part B: Cybern. 50(11), 1494–1502 (2003)Google Scholar
  15. 15.
    Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Nonlinear control synthesis by sum-of-squares optimization: a Lyapunov-based approach. In: Proceedings of the Asian Control Conference (ASCC), vol. 1, pp. 157–165. Melbourne, Australia (2004)Google Scholar
  16. 16.
    Tanaka, K., Yoshida, H., Ohtake, H., Wang, H.O.: A sum of squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 911–922 (2009)CrossRefGoogle Scholar
  17. 17.
    Sala, A.: Introducing shape-dependent relaxed conditions in fuzzy control of nonlinear systems in Takagi-Sugeno form. In: Proceedings of the International Conference on Fuzzy Systems (FUZZ-IEEE 2008), Hong Kong, pp. 512–517. IEEE (2008)Google Scholar
  18. 18.
    Sala, A., Guerra, T.M.: Stability analysis of fuzzy systems: membership-shape and polynomial approaches. In: Proceedings of the 17th World Congress of The International Federation of Automatic Control, Seoul, South Korea, pp. 5605–5610 (2008)Google Scholar
  19. 19.
    Sala, A., Ariño, C.: Polynomial fuzzy models for nonlinear control: a Taylor-series approach. IEEE Trans. Fuzzy Syst. 17(6), 284–295 (2009)CrossRefGoogle Scholar
  20. 20.
    Lam, H.K., Narimani, M.: Sum-of-squares-based stability analysis of polynomial fuzzy-model-based control systems. In: Proceedings 2009 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2009), pp. 234–239. IEEE, ICC Jeju, Jeju Island, Korea (2009)Google Scholar
  21. 21.
    Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOSTOOLS: a general purpose sum of squares programming solver. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 1, pp. 741–746. Las Vegas, Nevada, USA (2002)Google Scholar
  22. 22.
    Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations