Output Regulation of Polynomial Fuzzy Model-Based Control Systems

  • Hak-Keung LamEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 64)


This chapter considers a regulation problem for polynomial fuzzy model-based control systems. An output-feedback polynomial fuzzy controller is employed to drive the system outputs to reach a desired level. SOS-based stability conditions for the three cases (perfectly, partially and imperfectly matched premises) are obtained, which is facilitated by considering different information of membership functions, to determine the system stability and synthesize the controller. With the support of Barbalat’s lemma, it is guaranteed that a stable output-feedback polynomial fuzzy controller will produce no steady state error. A simulation example is given to verify the analysis results and show that the output-feedback polynomial fuzzy controller of the three cases are able to handle well the regulation control problem.


Polynomial Fuzzy Model Output Register Regulation Control Problem Premise Membership Functions Integrated Control Techniques 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)CrossRefGoogle Scholar
  2. 2.
    Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)CrossRefGoogle Scholar
  3. 3.
    Kim, E., Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Syst. 8(5), 523–534 (2000)CrossRefGoogle Scholar
  4. 4.
    Teixeira, M.C.M., Assuncão, E., Avellar, R.G.: On relaxed LMI-based designs for fuzzy regulators and fuzzy observers. IEEE Trans. Fuzzy Syst. 11(5), 613–623 (2003)CrossRefGoogle Scholar
  5. 5.
    Liu, X., Zhang, Q.: New approaches to H\(_\infty \) controller designs based on fuzzy observers for Takagi-Sugeno fuzzy systems via LMI. Automatica 39(9), 1571–1582 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Liu, X., Zhang, Q.: Approaches to quadratic stability conditions and H\(_\infty \) control designs for Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 11(6), 830–839 (2003)CrossRefGoogle Scholar
  7. 7.
    Fang, C.H., Liu, Y.S., Kau, S.W., Hong, L., Lee, C.H.: A new LMI-based approach to relaxed quadratic stabilization of Takagi-Sugeno fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(3), 386–397 (2006)CrossRefGoogle Scholar
  8. 8.
    Sala, A., Ariño, C.: Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya’s theorem. Fuzzy Sets Syst. 158(24), 2671–2686 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lo, J.C., Wan, J.R.: Studies on linear matrix inequality relaxations for fuzzy control systems via homogeneous polynomials. IET Control Theory Appl. 4(11), 2293–2302 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lam, H.K., Leung, F.H.F.: Stability analysis of fuzzy control systems subject to uncertain grades of membership. IEEE Trans. Syst., Man Cybern. Part B: Cybern. 35(6), 1322–1325 (2005)Google Scholar
  11. 11.
    Lam, H.K., Leung, F.H.F.: LMI-based stability and performance design of fuzzy control systems: Fuzzy models and controllers with different premises. In: Proceedings of the International Conference on Fuzzy Systems 2006 (FUZZ-IEEE 2006), pp. 9499–9506. Vancouver (2006)Google Scholar
  12. 12.
    Sala, A., Ariño, C.: Relaxed stability and performance conditions for Takagi-Sugeno fuzzy systems with knowledge on membership function overlap. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37(3), 727–732 (2007)Google Scholar
  13. 13.
    Ariño, C., Sala, A.: Extensions to “stability analysis of fuzzy control systems subject to uncertain grades of membership”. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(2), 558–563 (2008)Google Scholar
  14. 14.
    Lam, H.K., Narimani, M.: Stability analysis and performance design for fuzzy-model-based control system under imperfect premise matching. IEEE Trans. Fuzzy Syst. 17(4), 949–961 (2009)CrossRefGoogle Scholar
  15. 15.
    Sala, A., Ariño, C.: Relaxed stability and performance LMI conditions for Takagi-Sugeno fuzzy systems with polynomial constraints on membership function shapes. IEEE Trans. Fuzzy Syst. 16(5), 1328–1336 (2008)CrossRefGoogle Scholar
  16. 16.
    Kruszewski, A., Sala, A., Guerra, T., Arino, C.: A triangulation approach to asymptotically exact conditions for fuzzy summations. IEEE Trans. Fuzzy Syst. 17(5), 985–994 (2009)CrossRefGoogle Scholar
  17. 17.
    Narimani, M., Lam, H.K.: Relaxed LMI-based stability conditions for Takagi-Sugeno fuzzy control systems using regional-membership-function-shape-dependent analysis approach. IEEE Trans. Fuzzy Syst. 17(5), 1221–1228 (2009)CrossRefGoogle Scholar
  18. 18.
    Lam, H.K., Narimani, M.: Quadratic stability analysis of fuzzy-model-based control systems using staircase membership functions. IEEE Trans. Fuzzy Syst. 18(1), 125–137 (2010)CrossRefGoogle Scholar
  19. 19.
    Lo, J.C., Lin, M.L.: Robust H\(_\infty \) nonlinear control via fuzzy static output feedback. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 50(11), 1494–1502 (2003)Google Scholar
  20. 20.
    Li, H., Chen, B., Zhou, Q., Qian, W.: Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(1), 94–102 (2009)Google Scholar
  21. 21.
    Wu, L., Zheng, W.X.: L\(_2\) - L\(_\infty \) control of nonlinear fuzzy Itô stochastic delay systems via dynamic output feedback. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(5), 1308–1315 (2009)Google Scholar
  22. 22.
    Gao, H., Chen, T.: Stabilization of nonlinear systems under variable sampling: a fuzzy control approach. IEEE Trans. Fuzzy Syst. 15(5), 972–983 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gao, H., Liu, X., Lam, J.: Stability analysis and stabilization for discrete-time fuzzy systems with time-varying delay. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(2), 306–317 (2009)Google Scholar
  24. 24.
    Lam, H.K., Leung, F.H.F., Tam, P.K.S.: Fuzzy control of a class of multivariable nonlinear systems subject to parameter uncertainties: model reference approach. Int. J. Approx. Reason. 26(2), 129–144 (2001)CrossRefzbMATHGoogle Scholar
  25. 25.
    Lam, H.K., Leung, F.H.F., Tam, P.K.S.: A switching controller for uncertain nonlinear systems. IEEE Control Syst. Mag. 22(1), 7–14 (2002)CrossRefGoogle Scholar
  26. 26.
    Tseng, C.S., Chen, B.S., Uang, H.J.: Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model. IEEE Trans. Fuzzy Syst. 9(3), 381–392 (2001)CrossRefGoogle Scholar
  27. 27.
    Wang, M., Chen, B., Liu, X., Shi, P.: Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems. Fuzzy Sets Syst. 159(8), 949–967 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, W.J., Luoh, L.: Stability and stabilization of fuzzy large-scale systems. IEEE Trans. Fuzzy Syst. 12(3), 309–315 (2004)CrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, W.J., Lin, W.W.: Decentralized PDC for large-scale TS fuzzy systems. IEEE Trans. Fuzzy Syst. 13(6), 779–786 (2005)CrossRefGoogle Scholar
  30. 30.
    Lin, W.W., Wang, W.J., Yang, S.H.: A novel stabilization criterion for large-scale T-S fuzzy systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37(4), 1074–1079 (2007)Google Scholar
  31. 31.
    Rubio, J.D.J., Yu, W.: A new discrete-time sliding-mode control with time-varying gain and neural identification. Int. J. Control 79(4), 338–348 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Yu, W., Moreno-Armendariz, M.A.: Robust visual servoing of robot manipulators with neuro compensation. J. Frankl. Inst. 342(7), 824–838 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Yu, W., Li, X.: PD control of robot with velocity estimation and uncertainties compensation. Int. J. Robot. Autom. 21(1), 1–9 (2006)Google Scholar
  34. 34.
    Pérez-Cruz, J.H., Chairez, I., Poznyak, A., Rubio, J.J.: Constrained neural control for the adaptive tracking of power profiles in a TRIGA reactor. Int. J. Innov. Comput. Inf. Control 7(7(B)), 4575–4588 (2011)Google Scholar
  35. 35.
    Chiu, C.S., Chiang, T.S.: Robust output regulation of T-S fuzzy systems with multiple time-varying state and input delays. IEEE Trans. Fuzzy Syst. 17(4), 962–975 (2009)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lian, K.Y., Liou, J.J., Huang, C.Y.: LMI-based integral fuzzy control of DC-DC converters. IEEE Trans. Fuzzy Syst. 14(1), 71–80 (2006)CrossRefGoogle Scholar
  37. 37.
    Lam, H.K., Tan, S.C.: Stability analysis of fuzzy-model-based control systems: application on regulation of switching DC–DC converter. IET Control Theory Appl. 3(8), 1093–1106 (2009)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lee, T.H., Lam, H.K., Leung, F.H.F., Tam, P.K.S.: A practical fuzzy logic controller for the path tracking of wheeled mobile robots. IEEE Control Syst. Mag. 23(2), 60–65 (2003)CrossRefGoogle Scholar
  39. 39.
    Das, T., Kar, I.N.: Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Control Syst. Technol. 14(3), 501–510 (2006)CrossRefGoogle Scholar
  40. 40.
    Leung, F.H.F., Lam, H.K., Ling, S.H., Tam, P.K.S.: Optimal and stable fuzzy controllers for nonlinear systems based on an improved genetic algorithm. IEEE Trans. Ind. Electron. 51(1), 172–182 (2004)CrossRefGoogle Scholar
  41. 41.
    Li, T.H.S., Huang, Y.C.: MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators. Inf. Sci. 180(23), 4641–4660 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Behal, A., Dawson, D.M., Dixon, W.E., Fang, Y.: Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. IEEE Trans. Autom. Control 47(3), 495–500 (2002)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)zbMATHGoogle Scholar
  44. 44.
    Tanaka, K., Yoshida, H., Ohtake, H., Wang, H.O.: A sum of squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 911–922 (2009)CrossRefGoogle Scholar
  45. 45.
    Tanaka, K., Ohtake, H., Wang, H.O.: Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach. IEEE Trans. Syst. Man Cybern.-Part B: Cybern. 39(2), 561–567 (2009)Google Scholar
  46. 46.
    Chen, C.L., Chen, P.C., Chen, C.K.: Analysis and design of fuzzy control system. Fuzzy Sets Syst. 57(2), 125–140 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Montagner, V.F., Oliveira, R.C.L.F., Peres, P.L.D.: Convergent LMI relaxations for quadratic stabilizability and control of Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 863–873 (2009)CrossRefGoogle Scholar
  48. 48.
    Lam, H.K., Seneviratne, L.D.: Stability analysis of polynomial fuzzy-model-based control systems under perfect/imperfect premise matching. IET Control Theory Appl. 5(15), 1689–1697 (2011)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Lam, H.K., Tsai, S.H.: Stability analysis of polynomial-fuzzy-model-based control systems with mismatched premise membership functions. IEEE Trans. Fuzzy Syst. 22(1), 223–229 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations