Advertisement

Preliminaries

  • Hak-Keung LamEmail author
Chapter
  • 596 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 64)

Abstract

This chapter provides the technical and mathematical background for the fuzzy model-based control which offers the equations of the fuzzy model and closed-loop systems, definition of variables, published stability conditions in terms of linear matrix inequalities (LMIs) and sum of squares (SOS). Numerical examples are given to demonstrate the motivation using polynomial fuzzy model over T-S fuzzy model. State-feedback fuzzy controller and polynomial fuzzy controller are introduced to close the feedback loop. Three main types of control design including perfectly, partially and imperfectly matched premises are discussed and compared. LMI/SOS-based stability conditions in the literature are reviewed, which will be used in other chapters for comparison purposes.

Keywords

Polynomial Fuzzy Model Premise Matching Fuzzy State Feedback Controller Linear Matrix Inequalities (LMI) Premise Membership Functions 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tanaka, K., Iwasaki, M., Wang, H.O.: Switching control of an R/C hovercraft: stabilization and smooth switching. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 31(6), 853–863 (2001)Google Scholar
  2. 2.
    Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)CrossRefGoogle Scholar
  3. 3.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man. Cybern. smc-15(1), 116–132 (1985)Google Scholar
  4. 4.
    Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)CrossRefGoogle Scholar
  6. 6.
    Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)CrossRefGoogle Scholar
  7. 7.
    Kim, E., Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Syst. 8(5), 523–534 (2000)CrossRefGoogle Scholar
  8. 8.
    Liu, X., Zhang, Q.: New approaches to H\(_\infty \) controller designs based on fuzzy observers for Takagi-Sugeno fuzzy systems via LMI. Automatica 39(9), 1571–1582 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Liu, X., Zhang, Q.: Approaches to quadratic stability conditions and H\(_\infty \) control designs for Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 11(6), 830–839 (2003)CrossRefGoogle Scholar
  10. 10.
    Teixeira, M.C.M., Assuncão, E., Avellar, R.G.: On relaxed LMI-based designs for fuzzy regulators and fuzzy observers. IEEE Trans. Fuzzy Syst. 11(5), 613–623 (2003)CrossRefGoogle Scholar
  11. 11.
    Fang, C.H., Liu, Y.S., Kau, S.W., Hong, L., Lee, C.H.: A new LMI-based approach to relaxed quadratic stabilization of Takagi-Sugeno fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(3), 386–397 (2006)CrossRefGoogle Scholar
  12. 12.
    Sala, A., Ariño, C.: Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya’s theorem. Fuzzy Sets Syst. 158(24), 2671–2686 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Montagner, V.F., Oliveira, R.C.L.F., Peres, P.L.D.: Convergent LMI relaxations for quadratic stabilizability and control of Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 863–873 (2009)CrossRefGoogle Scholar
  14. 14.
    Lo, J.C., Wan, J.R.: Studies on linear matrix inequality relaxations for fuzzy control systems via homogeneous polynomials. IET Control Theor. Appl. 4(11), 2293–2302 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tanaka, K., Yoshida, H., Ohtake, H., Wang, H.O.: A sum of squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 911–922 (2009)CrossRefGoogle Scholar
  16. 16.
    Tanaka, K., Ohtake, H., Wang, H.O.: Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach. IEEE Trans. Syst. Man Cybern. - Part B: Cybern. 39(2), 561–567 (2009)Google Scholar
  17. 17.
    Sala, A., Ariño, C.: Polynomial fuzzy models for nonlinear control: a Taylor-series approach. IEEE Trans. Fuzzy Syst. 17(6), 284–295 (2009)CrossRefGoogle Scholar
  18. 18.
    Lam, H.K., Narimani, M.: Sum-of-squares-based stability analysis of polynomial fuzzy-model-based control systems. In: Proceedings of the 2009 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2009), pp. 234–239. IEEE, ICC Jeju, Jeju Island, Korea (2009)Google Scholar
  19. 19.
    Narimani, M., Lam, H.K.: SOS-based stability analysis of polynomial fuzzy-model-based control systems via polynomial membership functions. IEEE Trans. Fuzzy Syst. 18(5), 862–871 (2010)CrossRefGoogle Scholar
  20. 20.
    Lam, H.K.: Polynomial fuzzy-model-based control systems: stability analysis via piecewise-linear membership functions. IEEE Trans. Fuzzy Syst. 19(3), 588–593 (2011)CrossRefGoogle Scholar
  21. 21.
    Lam, H.K.: Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(1), 258–267 (2012)Google Scholar
  22. 22.
    Lam, H.K., Leung, F.H.F.: Stability analysis of fuzzy control systems subject to uncertain grades of membership. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 35(6), 1322–1325 (2005)Google Scholar
  23. 23.
    Sala, A., Ariño, C.: Relaxed stability and performance conditions for Takagi-Sugeno fuzzy systems with knowledge on membership function overlap. IEEE Trans. Syst., Man Cybern. Part B: Cybern. 37(3), 727–732 (2007)Google Scholar
  24. 24.
    Sala, A., Ariño, C.: Relaxed stability and performance LMI conditions for Takagi-Sugeno fuzzy systems with polynomial constraints on membership function shapes. IEEE Trans. Fuzzy Syst. 16(5), 1328–1336 (2008)CrossRefGoogle Scholar
  25. 25.
    Ariño, C., Sala, A.: Extensions to “stability analysis of fuzzy control systems subject to uncertain grades of membership”. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(2), 558 –563 (2008)Google Scholar
  26. 26.
    Lam, H.K., Narimani, M.: Stability analysis and performance design for fuzzy-model-based control system under imperfect premise matching. IEEE Trans. Fuzzy Syst. 17(4), 949–961 (2009)CrossRefGoogle Scholar
  27. 27.
    Lam, H.K., Seneviratne, L.D.: Stability analysis of polynomial fuzzy-model-based control systems under perfect/imperfect premise matching. IET Control Theor. Appl. 5(15), 1689–1697 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Narimani, M., Lam, H.K.: Relaxed LMI-based stability conditions for Takagi-Sugeno fuzzy control systems using regional-membership-function-shape-dependent analysis approach. IEEE Trans. Fuzzy Syst. 17(5), 1221–1228 (2009)CrossRefGoogle Scholar
  29. 29.
    Lam, H.K.: Design of stable fuzzy controller for non-linear systems subject to imperfect premise matching based on grid-point approach. IET Control Theor. Appl. 4(12), 2770–2780 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kruszewski, A., Sala, A., Guerra, T., Arino, C.: A triangulation approach to asymptotically exact conditions for fuzzy summations. IEEE Trans. Fuzzy Syst. 17(5), 985–994 (2009)CrossRefGoogle Scholar
  31. 31.
    Narimani, M., Lam, H.K., Dilmaghani, R., Wolfe, C.: LMI-based stability analysis of fuzzy-model-based control systems using approximated polynomial membership functions. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(3), 713–724 (2011)Google Scholar
  32. 32.
    Lam, H.K., Narimani, M.: Quadratic stability analysis of fuzzy-model-based control systems using staircase membership functions. IEEE Trans. Fuzzy Syst. 18(1), 125–137 (2010)CrossRefGoogle Scholar
  33. 33.
    Lam, H.K.: LMI-based stability analysis for fuzzy-model-based control systems using artificial T-S fuzzy model. IEEE Trans. Fuzzy Syst. 19(3), 505–513 (2011)CrossRefGoogle Scholar
  34. 34.
    Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Nonlinear control synthesis by sum-of-squares optimization: a Lyapunov-based approach. In: Proceedings of the Asian Control Conference (ASCC), vol. 1, pp. 157–165. Melbourne, Australia (2004)Google Scholar
  35. 35.
    Papachristodoulou, A., Prajna, S.: A tutorial on sum of squares techniques for system analysis. In: Proceedings of the American Control Conference (ASCC), pp. 2686–2700. Portland, OR, USA (2005)Google Scholar
  36. 36.
    Prajna, S., Papachristodoulou, A., Parrilo, P.A.: SOSTOOLS - sum of squares optimization toolbox, user’s guide (2002)Google Scholar
  37. 37.
    Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOSTOOLS: a general purpose sum of squares programming solver. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 1, pp. 741–746. Las Vegas, Nevada, USA (2002)Google Scholar
  38. 38.
    Kim, E., Park, M., Ji, S., Park, M.: A new approach to fuzzy modeling. IEEE Trans. Fuzzy Syst. 5(3), 328–337 (1997)CrossRefGoogle Scholar
  39. 39.
    Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Set. Syst. 45(2), 135–156 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Khalil, H.K., Grizzle, J.W.: Nonlinear Systems. Prentice hall, Englewood Cliffs (1996)Google Scholar
  41. 41.
    Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: The LMI control toolbox. In: Proceedings of the 33rd IEEE Conference on Decision and Control, vol. 3, pp. 2038–2041. IEEE, Lake Buena Vista, FL, USA (1995)Google Scholar
  42. 42.
    Chen, C.L., Chen, P.C., Chen, C.K.: Analysis and design of fuzzy control system. Fuzzy Set. Syst. 57(2), 125–140 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations