Advertisement

Introduction

  • Hak-Keung LamEmail author
Chapter
  • 603 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 64)

Abstract

This chapter gives a general overview of the fuzzy model-based control which covers the background, literature review, development of the field, fuzzy models, fuzzy control methodologies, stability analysis approaches and control problems. The motivation of moving from basic fuzzy logic system for automatic control to fuzzy model-based control is first discussed. It follows by discussing various types of fuzzy models such as T–S and polynomial fuzzy models. Various types of fuzzy controllers are reviewed and their characteristics are discussed. Combining various fuzzy models and fuzzy controllers, a wide range of fuzzy model-based control systems are formed. Stability analysis of the fuzzy model-based control systems subject to various types of Lyapunov functions, types of stability analysis and types of stability analysis techniques are gone through. The characteristics of the three main types of control problems including stabilization, regulation and tracking are discussed.

Keywords

Membership Function Lyapunov Function Fuzzy Model Fuzzy Controller Fuzzy Logic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mendel, J.M.: Fuzzy logic systems for engineering: a tutorial. Proc. IEEE 83(3), 345–377 (1995)CrossRefGoogle Scholar
  2. 2.
    Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7(1), 1–13 (1975)zbMATHCrossRefGoogle Scholar
  3. 3.
    Mamdani, E.H.: Advances in the linguistic synthesis of fuzzy controllers. Int. J. Man-Mach. Stud. 8(6), 669–678 (1976)zbMATHCrossRefGoogle Scholar
  4. 4.
    Kickert, W.J.M., Mamdani, E.H.: Analysis of a fuzzy logic controller. Fuzzy Sets Syst. 1(1), 29–44 (1978)zbMATHCrossRefGoogle Scholar
  5. 5.
    Tong, R.M., Beck, M.B., Latten, A.: Fuzzy control of the activated sludge wastewater treatment process. Automatica 16(6), 695–701 (1980)zbMATHCrossRefGoogle Scholar
  6. 6.
    Holmblad, L.P., Ostergaard, J.J.: Control of a cement kiln by fuzzy logic techniques. In: Proceedings of Conference 8-th IFAC, pp. 809–814. Kyoto, Japan (1981)Google Scholar
  7. 7.
    Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)CrossRefGoogle Scholar
  8. 8.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man. Cybern. smc-15(1), 116–132 (1985)Google Scholar
  9. 9.
    Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)CrossRefGoogle Scholar
  11. 11.
    Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)CrossRefGoogle Scholar
  12. 12.
    Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)CrossRefGoogle Scholar
  13. 13.
    Tanaka, K., Yoshida, H., Ohtake, H., Wang, H.O.: A sum of squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 911–922 (2009)Google Scholar
  14. 14.
    Tanaka, K., Ohtake, H., Wang, H.O.: Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach. IEEE Trans. Syst. Man Cybern. - Part B: Cybern. 39(2), 561–567 (2009)Google Scholar
  15. 15.
    Sala, A., Ariño, C.: Polynomial fuzzy models for nonlinear control: a Taylor-series approach. IEEE Trans. Fuzzy Syst. 17(6), 284–295 (2009)CrossRefGoogle Scholar
  16. 16.
    Tanaka, K., Iwasaki, M., Wang, H.O.: Switching control of an R/C hovercraft: stabilization and smooth switching. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 31(6), 853–863 (2001)Google Scholar
  17. 17.
    Lam, H.K., Leung, F.H.F., Lai, J.C.Y.: Fuzzy model-based control systems using fuzzy combination techniques. Int. J. Fuzzy Syst. 9(3), 123–132 (2007)MathSciNetGoogle Scholar
  18. 18.
    Cao, Y.Y., Frank, P.M.: Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Trans. Fuzzy Syst. 8(2), 200–211 (2000)CrossRefGoogle Scholar
  19. 19.
    Cao, Y.Y., Frank, P.M.: Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models. Fuzzy Sets Syst. 124(2), 213–229 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Wang, R.J., Lin, W.W., Wang, W.J.: Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34(2), 1288–1292 (2004)Google Scholar
  21. 21.
    Gao, H., Liu, X., Lam, J.: Stability analysis and stabilization for discrete-time fuzzy systems with time-varying delay. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(2), 306–317 (2009)Google Scholar
  22. 22.
    Qiu, J., Feng, G., Yang, J.: A new design of delay-dependent robust filtering for discrete-time T-S fuzzy systems with time-varying delay. IEEE Trans. Fuzzy Syst. 17(5), 1044–1058 (2009)CrossRefGoogle Scholar
  23. 23.
    Chen, B., Liu, X., Lin, C., Liu, K.: Robust H\(_\infty \) control of Takagi-Sugeno fuzzy systems with state and input time delays. Fuzzy Sets Syst. 160(4), 403–422 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Zhang, B., Xu, S.: Delay-dependent robust H\(_\infty \) control for uncertain discrete-time fuzzy systems with time-varying delays. IEEE Trans. Fuzzy Syst. 17(4), 809–823 (2009)CrossRefGoogle Scholar
  25. 25.
    Dong, H., Wang, Z., Ho, D.W.C., Gao, H.: Robust H\(_\infty \) fuzzy output-feedback control with multiple probabilistic delays and multiple missing measurements. IEEE Trans. Fuzzy Syst. 18(4), 712–725 (2010)CrossRefGoogle Scholar
  26. 26.
    Wu, L., Su, X., Shi, P., Qiu, J.: A new approach to stability analysis and stabilization of discrete-time T-S fuzzy time-varying delay systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(1), 273–286 (2011)Google Scholar
  27. 27.
    Dong, H., Wang, Z., Lam, J., Gao, H.: Fuzzy model-based robust fault detection with stochastic mixed time delays and successive packet dropouts. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 365–376 (2012)Google Scholar
  28. 28.
    Tsai, S.H., Sun, C., Lo, J.C., Lam, H.K.: Relaxed stabilization of T-S fuzzy systems with time-delay. In: Proceedings of the 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2013), pp. 1–6. IEEE (2013)Google Scholar
  29. 29.
    Peng, C., Fei, M.R.: An improved result on the stability of uncertain T-S fuzzy systems with interval time-varying delay. Fuzzy Sets Syst. 212, 97–109 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Balasubramaniam, P., Senthilkumar, T.: Delay-dependent robust stabilization and H\(_\infty \) control for uncertain stochastic T-S fuzzy systems with discrete interval and distributed time-varying delays. Int. J. Autom. Comput. 10(1), 18–31 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhao, L., Gao, H., Karimi, H.R.: Robust stability and stabilization of uncertain T-S fuzzy systems with time-varying delay: an input-output approach. IEEE Trans. Fuzzy Syst. 21(5), 883–897 (2013)CrossRefGoogle Scholar
  32. 32.
    Kchaou, M., Souissi, M., Toumi, A.: Delay-dependent stability and robust L\(_2\) - L\(_\infty \) control for a class of fuzzy descriptor systems with time-varying delay. Int. J. Robust Nonlinear Control 23(3), 284–304 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Chen, W.H., Wei, D., Zheng, W.X.: Delayed impulsive control of Takagi-Sugeno fuzzy delay systems. IEEE Trans. Fuzzy Syst. 21(3), 516–526 (2013)CrossRefGoogle Scholar
  34. 34.
    Wu, L., Yang, X., Lam, H.K.: Dissipativity analysis and synthesis for discrete-time T-S fuzzy stochastic systems with time-varying delay. IEEE Trans. Fuzzy Syst. 22(2), 380–394 (2014)CrossRefGoogle Scholar
  35. 35.
    Yang, X., Wu, L., Lam, H.K., Su, X.: Stability and stabilization of discrete-time T-S fuzzy systems with stochastic perturbation and time-varying delay. IEEE Trans. Fuzzy Syst. 22(1), 124–138 (2014)CrossRefGoogle Scholar
  36. 36.
    Gassara, H., Hajjaji, A.E., Kchaou, M., Chaabane, M.: Robust H\(_\infty \) reliable control of time delay nonlinear systems via Takagi-Sugeno fuzzy models. Int. J. Syst. Sci. 45(3), 667–681 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Tsai, S.H.: Delay-dependent robust stabilisation for a class of fuzzy bilinear systems with time-varying delays in state and control input. Int. J. Syst. Sci. 45(3), 187–201 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Li, F., Shi, P., Wu, L., Zhang, X.: Fuzzy model-based \({\cal D}\)-stability and nonfragile control for discrete-time descriptor systems with multiple delays. IEEE Trans. Fuzzy Syst. 22(4), 1019–1025 (2014)Google Scholar
  39. 39.
    Li, H., Jing, X., Karimi, H.: Output-feedback based H\(_\infty \) control for active suspension systems with control delay. IEEE Trans. Ind. Electron. 61(1), 436–446 (2014)CrossRefGoogle Scholar
  40. 40.
    Souza, F.O., Campos, V.C.S., Palhares, R.M.: On delay-dependent stability conditions for Takagi-Sugeno fuzzy systems. J. Frankl. Inst. 351(7), 3707–3718 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Li, H., Gao, Y., Wu, L., Lam, H.K.: Fault detection for T-S fuzzy time-delay systems: Delta operator and input-output methods. IEEE Trans. Cybern. 45(2), 229–241 (2015)CrossRefGoogle Scholar
  42. 42.
    Liang, Q., Mendel, J.M.: Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters. IEEE Trans. Fuzzy Syst. 8(5), 551–563 (2000)CrossRefGoogle Scholar
  43. 43.
    Lam, H.K., Seneviratne, L.D.: Stability analysis of interval type-2 fuzzy model-based control systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(3), 617–628 (2008)Google Scholar
  44. 44.
    Lam, H.K.: LMI-based stability analysis for fuzzy model-based control systems using artificial T-S fuzzy model. IEEE Trans. Fuzzy Syst. 19(3), 505–513 (2011)CrossRefGoogle Scholar
  45. 45.
    Lam, H.K., Li, H., Deters, C., Secco, E., Wurdemann, H.A., Althoefer, K.: Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Electron. 61(2), 956–968 (2014)CrossRefGoogle Scholar
  46. 46.
    Sheng, L., Ma, X.: Stability analysis and controller design of interval type-2 fuzzy systems with time delay. Int. J. Syst. Sci. 45(5), 977–993 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Sheng, L., Ma, X.: Stability analysis and controller design of discrete interval type-2 fuzzy systems. Asian J. Control 16(4), 1091–1104 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Chen, C.L., Chen, P.C., Chen, C.K.: Analysis and design of fuzzy control system. Fuzzy Sets Syst. 57(2), 125–140 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Wang, W.J., Yan, S.F., Chiu, C.H.: Flexible stability criteria for a linguistic fuzzy dynamic system. Fuzzy Sets Syst. 105(1), 63–80 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Kim, E., Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Syst. 8(5), 523–534 (2000)CrossRefGoogle Scholar
  51. 51.
    Liu, X., Zhang, Q.: New approaches to H\(_\infty \) controller designs based on fuzzy observers for Takagi-Sugeno fuzzy systems via LMI. Automatica 39(9), 1571–1582 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Liu, X., Zhang, Q.: Approaches to quadratic stability conditions and H\(_\infty \) control designs for Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 11(6), 830–839 (2003)CrossRefGoogle Scholar
  53. 53.
    Teixeira, M.C.M., Assuncão, E., Avellar, R.G.: On relaxed LMI-based designs for fuzzy regulators and fuzzy observers. IEEE Trans. Fuzzy Syst. 11(5), 613–623 (2003)CrossRefGoogle Scholar
  54. 54.
    Fang, C.H., Liu, Y.S., Kau, S.W., Hong, L., Lee, C.H.: A new LMI-based approach to relaxed quadratic stabilization of Takagi-Sugeno fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(3), 386–397 (2006)CrossRefGoogle Scholar
  55. 55.
    Sala, A., Ariño, C.: Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem. Fuzzy Sets Syst. 158(24), 2671–2686 (2007)zbMATHCrossRefGoogle Scholar
  56. 56.
    Montagner, V.F., Oliveira, R.C.L.F., Peres, P.L.D.: Convergent LMI relaxations for quadratic stabilizability and control of Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 863–873 (2009)CrossRefGoogle Scholar
  57. 57.
    Lo, J.C., Wan, J.R.: Studies on linear matrix inequality relaxations for fuzzy control systems via homogeneous polynomials. IET Control Theory Appl. 4(11), 2293–2302 (2010)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Chadli, M., Karimi, H.R., Shi, P.: On stability and stabilization of singular uncertain Takagi-Sugeno fuzzy systems. J. Frankl. Inst. 351(3), 1453–1463 (2014)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Hu, X., Wu, L., Hu, C., Wang, Z., Gao, H.: Dynamic output feedback control of a flexible air-breathing hypersonic vehicle via T-S fuzzy approach. Int. J. Syst. Sci. 45(8), 1740–1756 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Li, H., Wu, C., Feng, Z.: Fuzzy dynamic output-feedback control of non-linear networked discrete-time system with missing measurements. IET Control Theory Appl. 9(3), 327335 (2015)MathSciNetGoogle Scholar
  61. 61.
    Chung, H.Y., Wu, S.M., Yu, F.M., Chang, W.J.: Evolutionary design of static output feedback controller for Takagi-Sugeno fuzzy systems. IET Control Theory Appl. 1(4), 1096–1103 (2007)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Kau, S.W., Lee, H.J., Yang, C.M., Lee, C.H., Hong, L., Fang, C.H.: Robust H\(_\infty \) fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties. Fuzzy Sets Syst. 158(2), 135–146 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Huang, D., Nguang, S.K.: Static output feedback controller design for fuzzy systems: an ILMI approach. Inf. Sci. 177(14), 3005–3015 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Li, J., Wang, H., Niemann, D., Tanaka, K.: Dynamic parallel distributed compensation for Takagi-Sugeno fuzzy systems: An LMI approach. Inf. Sci. 123(3–4), 201–221 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Lam, H.K., Leung, F.H.F.: Stability analysis of fuzzy control systems subject to uncertain grades of membership. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 35(6), 1322–1325 (2005)Google Scholar
  66. 66.
    Ariño, C., Sala, A.: Extensions to “stability analysis of fuzzy control systems subject to uncertain grades of membership”. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(2), 558–563 (2008)Google Scholar
  67. 67.
    Lam, H.K., Narimani, M.: Stability analysis and performance design for fuzzy model-based control system under imperfect premise matching. IEEE Trans. Fuzzy Syst. 17(4), 949–961 (2009)CrossRefGoogle Scholar
  68. 68.
    Lam, H.K., Narimani, M.: Quadratic stability analysis of fuzzy model-based control systems using staircase membership functions. IEEE Trans. Fuzzy Syst. 18(1), 125–137 (2010)CrossRefGoogle Scholar
  69. 69.
    Lam, H.K., Narimani, M.: Sum-of-squares-based stability analysis of polynomial fuzzy model-based control systems. In: Proceedings of 2009 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2009), pp. 234–239. IEEE, ICC Jeju, Jeju Island, Korea (2009)Google Scholar
  70. 70.
    Lam, H.K., Seneviratne, L.D.: Stability analysis of polynomial fuzzy model-based control systems under perfect/imperfect premise matching. IET Control Theory Appl. 5(15), 1689–1697 (2011)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Lam, H.K.: Polynomial fuzzy model-based control systems: Stability analysis via piecewise-linear membership functions. IEEE Trans. Fuzzy Syst. 19(3), 588–593 (2011)CrossRefGoogle Scholar
  72. 72.
    Lam, H.K.: Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy model-based control approach. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(1), 258–267 (2012)Google Scholar
  73. 73.
    Li, H., Sun, X., Shi, P., Lam, H.K.: Control design of interval type-2 fuzzy systems with actuator fault: Sampled-data control approach. Inf. Sci. 32, 1–13 (2015)Google Scholar
  74. 74.
    Zhou, Q., Liu, D., Gao, Y., Lam, H.K., Sakthivel, R.: Interval type-2 fuzzy control for nonlinear discrete-time systems with time-varying delays. Neurocomputing 157, 22–32 (2015)CrossRefGoogle Scholar
  75. 75.
    Han, Z.X., Feng, G., Walcott, B.L., Ma, J.: Dynamic output feedback controller design for fuzzy systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 30(1), 204–210 (2000)Google Scholar
  76. 76.
    Chen, B.S., Tseng, C.S., Uang, H.J.: Mixed H\(_2\)/H\(_\infty \) fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach. IEEE Trans. Fuzzy Syst. 8(3), 249–265 (2000)CrossRefGoogle Scholar
  77. 77.
    Lo, J.C., Lin, M.L.: Robust H\(_\infty \) nonlinear control via fuzzy static output feedback. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 50(11), 1494–1502 (2003)Google Scholar
  78. 78.
    Chang, W., Park, J.B., Joo, Y.H., Chen, G.: Static output-feedback fuzzy controller for Chen’s chaotic system with uncertainties. Inf. Sci. 151, 227–244 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Nguang, S.K., Shi, P.: H\(_\infty \) fuzzy output feedback control design for nonlinear systems: An LMI approach. IEEE Trans. Fuzzy Syst. 11(3), 331–340 (2003)CrossRefGoogle Scholar
  80. 80.
    Nguang, S.K., Shi, P.: Fuzzy output feedback control of nonlinear systems under sampled measurements. Automatica 39(12), 2169–2174 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Xu, S., Lam, J.: Robust H\(_\infty \) control for uncertain discrete-time-delay fuzzy systems via output feedback controllers. IEEE Trans. Fuzzy Syst. 13(1), 82–93 (2005)CrossRefGoogle Scholar
  82. 82.
    Huang, D., Nguang, S.K.: Robust H\(_\infty \) static output feedback control of fuzzy systems: An ILMI approach. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 36(1), 216–222 (2006)Google Scholar
  83. 83.
    Assawinchaichote, W., Nguang, S.K.: Fuzzy H\(_\infty \) output feedback control design for singularly perturbed systems with pole placement constraints: an LMI approach. IEEE Trans. Fuzzy Syst. 14(3), 361–371 (2006)CrossRefGoogle Scholar
  84. 84.
    Mansouri, B., Manamanni, N., Guelton, K., Kruszewski, A., Guerra, T.M.: Output feedback LMI tracking control conditions with H\(_\infty \) criterion for uncertain and disturbed TS models. Inf. Sci. 179(4), 446–457 (2009)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Lian, K.Y., Liou, J.J.: Output tracking control for fuzzy systems via output feedback design. IEEE Trans. Fuzzy Syst. 14(5), 628–639 (2006)CrossRefGoogle Scholar
  86. 86.
    Guelton, K., Bouarar, T., Manamanni, N.: Robust dynamic output feedback fuzzy Lyapunov stabilization of Takagi-Sugeno systems - a descriptor redundancy approach. Fuzzy Sets Syst. 160(19), 2796–2811 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Lee, K.R., Kim, J.H., Jeung, E.T., Park, H.B.: Output feedback robust H\(_\infty \) control of uncertain fuzzy dynamic systems with time-varying delay. IEEE Trans. Fuzzy Syst. 8(6), 657–664 (2000)CrossRefGoogle Scholar
  88. 88.
    Li, H., Chen, B., Zhou, Q., Qian, W.: Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters. IEEE Trans. on Syst., Man and Cybern., Part B: Cybern. 39(1), 94–102 (2009)Google Scholar
  89. 89.
    Wu, L., Zheng, W.X.: L\(_2\) - L\(_\infty \) control of nonlinear fuzzy Itô stochastic delay systems via dynamic output feedback. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(5), 1308–1315 (2009)Google Scholar
  90. 90.
    Tognetti, E.S., Oliveira, R.C.L.F., Peres, P.L.D.: Reduced-order dynamic output feedback control of continuous-time T-S fuzzy systems. Fuzzy Sets Syst. 207, 27–44 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Kim, D.W., Lee, H.J.: Sampled-data observer-based output-feedback fuzzy stabilization of nonlinear systems: exact discrete-time design approach. Fuzzy Sets Syst. 201, 20–39 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Qiu, J., Feng, G., Gao, H.: Static-output-feedback control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 21(2), 245–261 (2013)CrossRefGoogle Scholar
  93. 93.
    Krokavec, D., Filasová, A.: Stabilizing fuzzy output control for a class of nonlinear systems. Adv. Fuzzy Syst. 2013, 1 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Liu, Y., Ban, X., Wu, F., Lam, H.K.: Dynamic output feedback controller design for T-S fuzzy plants with actuator saturation using linear fractional transformation. In: Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2014), pp. 2125–2132. IEEE (2014)Google Scholar
  95. 95.
    Ma, X.J., Sun, Z.Q., He, Y.Y.: Analysis and design of fuzzy controller and fuzzy observer. IEEE Trans. Fuzzy Syst. 6(1), 41–51 (1998)CrossRefGoogle Scholar
  96. 96.
    Lian, K.Y., Chiu, C.S., Chiang, T.S., Liu, P.: LMI-based fuzzy chaotic synchronization and communications. IEEE Trans. on Fuzzy Systems 9(4), 539–553 (2001)CrossRefGoogle Scholar
  97. 97.
    Lian, K.Y., Chiu, C.S., Chiang, T.S., Liu, P.: Secure communications of chaotic systems with robust performance via fuzzy observer-based design. IEEE Trans. Fuzzy Syst. 9(1), 212–220 (2001)CrossRefGoogle Scholar
  98. 98.
    Yoneyama, J., Nishikawa, M., Katayama, H., Ichikawa, A.: Design of output feedback controllers for Takagi-Sugeno fuzzy systems. Fuzzy Sets Syst. 121(1), 127–148 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Tseng, C.S., Chen, B.S., Uang, H.J.: Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model. IEEE Trans. Fuzzy Syst. 9(3), 381–392 (2001)CrossRefGoogle Scholar
  100. 100.
    Tong, S., Li, H.H.: Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties. Fuzzy Sets Syst. 131(2), 165–184 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Lo, J.C., Lin, M.L.: Observer-based robust H\(_\infty \) control for fuzzy systems using two-step procedure. IEEE Trans. Fuzzy Syst. 12(3), 350–359 (2004)CrossRefGoogle Scholar
  102. 102.
    Lin, C., Wang, Q.G., Lee, T.H.: Improvement on observer-based H\(_\infty \) control for TS fuzzy systems. Automatica 41(9), 1651–1656 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Tseng, C.S., Hwang, C.K.: Fuzzy observer-based fuzzy control design for nonlinear systems with persistent bounded disturbances. Fuzzy Sets Syst. 158(2), 164–179 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Ting, C.S.: An observer-based approach to controlling time-delay chaotic systems via Takagi-Sugeno fuzzy model. Inf. Sci. 177(20), 4314–4328 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Besheer, A.H., Emara, H.M., Aziz, M.M.A.: Fuzzy based output-feedback H\(_\infty \) control for uncertain nonlinear systems: an LMI approach. IET Control Theory Appl. 1(4), 1176–1185 (2007)MathSciNetCrossRefGoogle Scholar
  106. 106.
    Choi, H.H.: LMI-based nonlinear fuzzy observer-controller design for uncertain MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 15(5), 956–971 (2007)CrossRefGoogle Scholar
  107. 107.
    Gao, Z., Shi, X., Ding, S.X.: Fuzzy state/disturbance observer design for T-S fuzzy systems with application to sensor fault estimation. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(3), 875 (2008)Google Scholar
  108. 108.
    Tseng, C.S.: A novel approach to H\(_\infty \) decentralized fuzzy observer-based fuzzy control design for nonlinear interconnected systems. IEEE Trans. Fuzzy Syst. 16(5), 1337–1350 (2008)CrossRefGoogle Scholar
  109. 109.
    Lin, C., Wang, Q.G., Lee, T., He, Y.: Design of observer-based control for fuzzy time-delay systems. IEEE Trans. Fuzzy Syst. 16(2), 534–543 (2008)CrossRefGoogle Scholar
  110. 110.
    Chen, B., Liu, X.P., Tong, S.C., Lin, C.: Observer-based stabilization of T-S fuzzy systems with input delay. IEEE Trans. Fuzzy Syst. 16(3), 652–663 (2008)CrossRefGoogle Scholar
  111. 111.
    Guerra, T.M., Kruszewski, A., Vermeiren, L., Tirmant, H.: Conditions of output stabilization for nonlinear models in the Takagi-Sugeno’s form. Fuzzy Sets Syst. 157(9), 1248–1259 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Lendek, Z., Lauber, J., Guerra, T.M., Babuška, R., De Schutter, B.: Adaptive observers for T-S fuzzy systems with unknown polynomial inputs. Fuzzy Sets Syst. 161(15), 2043–2065 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Lendek, Z., Babuska, R., De Schutter, B.: Sequential stability analysis and observer design for distributed TS fuzzy systems. Fuzzy Sets Syst. 174(1), 1–30 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    Tanaka, K., Ohtake, H., Seo, T., Tanaka, M., Wang, H.O.: Polynomial fuzzy observer designs: a sum-of-squares approach. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(5), 1330–1342 (2012)Google Scholar
  115. 115.
    Liu, Y.J., Tong, S., Chen, C.L.P.: Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 21(2), 275–288 (2013)CrossRefGoogle Scholar
  116. 116.
    Lam, H.K., Li, H., Liu, H.: Stability analysis and control synthesis for fuzzy observer-based controller of nonlinear systems: a fuzzy model-based control approach. IET Control Theory Appl. 7(5), 663–672 (2013)MathSciNetCrossRefGoogle Scholar
  117. 117.
    Chadli, M., Karimi, H.R.: Robust observer design for unknown inputs Takagi-Sugeno models. IEEE Trans. Fuzzy Syst. 21(1), 158–164 (2013)CrossRefGoogle Scholar
  118. 118.
    Li, J., Li, J., Xia, Z.: Observer-based fuzzy control design for discrete-time T-S fuzzy bilinear systems. Int. J. Uncertain. Fuzziness. Knowl.-Based Syst. 21(03), 435–454 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    Han, H., Higaki, Y., Lam, H.K.: Fuzzy disturbance observer for a class of polynomial fuzzy control systems. In: Proceedings of the 2014 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2014), pp. 2306–2312. IEEE (2014)Google Scholar
  120. 120.
    Wen, S., Zeng, Z., Huang, T.: Observer-based H\(_\infty \) fuzzy control for discrete-time Takagi-Sugeno fuzzy mixed delay systems with random packet losses and multiplicative noises. Int. J. Syst. Sci. 46(1), 159–169 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    Moodi, H., Farrokhi, M.: Robust observer-based controller design for Takagi-Sugeno systems with nonlinear consequent parts. Fuzzy Sets Syst. 273, 141–154 (2015)MathSciNetCrossRefGoogle Scholar
  122. 122.
    Liu, C., Lam, H.K.: Design of polynomial fuzzy observer-controller with sampled-output measurements for nonlinear systems considering unmeasurable premise variables. IEEE Trans. Fuzzy Syst. (2015, Accepted to appear)Google Scholar
  123. 123.
    Lam, H.K., Leung, F.H.F., Tam, P.K.S.: A switching controller for uncertain nonlinear systems. IEEE Control Syst. Mag. 22(1), 7–14 (2002)CrossRefGoogle Scholar
  124. 124.
    Lam, H.K., Leung, F.H.F., Lee, Y.S.: Design of a switching controller for nonlinear systems with unknown parameters based on a fuzzy logic approach. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34(2), 1068–1074 (2004)Google Scholar
  125. 125.
    Lam, H.K., Leung, F.H.F.: Synchronization of uncertain chaotic systems based on the fuzzy model-based approach. Int. J. Bifurc. Chaos 16(5), 1435–1444 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Lam, H.K., Leung, F.H.F.: Fuzzy combination of linear state-feedback and switching controllers. Electron. Lett. 40(7), 410 (2004)CrossRefGoogle Scholar
  127. 127.
    Lam, H.K., Leung, F.H.F.: Fuzzy combination of fuzzy and switching state-feedback controllers for nonlinear systems subject to parameter uncertainties. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 35(2), 269–281 (2005)Google Scholar
  128. 128.
    Lam, H.K., Leung, F.H.F.: Fuzzy rule-based combination of linear and switching state-feedback controllers. Fuzzy Sets Syst. 156(2), 153–184 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    Xiu, Z., Ren, G.: Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems. Fuzzy Sets Syst. 151(1), 119–138 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    Dong, J., Yang, G.H.: State feedback control of continuous-time T-S fuzzy systems via switched fuzzy controllers. Inf. Sci. 178(6), 1680–1695 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    Dong, J., Yang, G.H.: Dynamic output feedback control synthesis for continuous-time T-S fuzzy systems via a switched fuzzy control scheme. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(4), 1166–1175 (2008)Google Scholar
  132. 132.
    Chang, W., Park, J.B., Joo, Y.H., Chen, G.: Design of robust fuzzy model-based controller with sliding mode control for SISO nonlinear systems. Fuzzy Sets Syst. 125(1), 1–22 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    Ho, D.W.C., Niu, Y.: Robust fuzzy design for nonlinear uncertain stochastic systems via sliding-mode control. IEEE Trans. Fuzzy Syst. 15(3), 350–358 (2007)CrossRefGoogle Scholar
  134. 134.
    Lam, H.K.: Design of stable fuzzy controller for non-linear systems subject to imperfect premise matching based on grid-point approach. IET Control Theory Appl. 4(12), 2770–2780 (2010)MathSciNetCrossRefGoogle Scholar
  135. 135.
    Li, H., Yu, J., Hilton, C., Liu, H.: Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach. IEEE Trans. Ind. Electron. 60(8), 3328–3338 (2013)CrossRefGoogle Scholar
  136. 136.
    Lam, H.K., Narimani, M., Li, H., Liu, H.: Stability analysis of polynomial-fuzzy model-based control systems using switching polynomial Lyapunov function. IEEE Trans. Fuzzy Syst. 21(5), 800–813 (2013)CrossRefGoogle Scholar
  137. 137.
    Liang, Y.W., Chen, C.C., Xu, S.S.D.: Study of reliable design using T-S fuzzy modeling and integral sliding mode control schemes. Int. J. Fuzzy Syst. 15(2), 233–243 (2013)MathSciNetGoogle Scholar
  138. 138.
    Han, H., Lam, H.K.: Discrete sliding-mode control for a class of T-S fuzzy models with modeling error. J. Adv. Comput. Intell. Intell. Inf. 18(6), 908–917 (2014)Google Scholar
  139. 139.
    Ngo, Q.H., Nguyen, N.P., Nguyen, C.N., Tran, T.H., Hong, K.S.: Fuzzy sliding mode control of container cranes. Int. J. Control Autom. Syst. 13(2), 1–7 (2015)CrossRefGoogle Scholar
  140. 140.
    Wang, T., Tong, S.: H\(_\infty \) control design for discrete-time switched fuzzy systems. Neurocomputing 151, 782–789 (2015)CrossRefGoogle Scholar
  141. 141.
    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)zbMATHGoogle Scholar
  142. 142.
    Katayama, H., Ichikawa, A.: H\(_\infty \) control for sampled-data nonlinear systems described by Takagi-Sugeno fuzzy systems. Fuzzy Sets Syst. 148(3), 431–452 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  143. 143.
    Yoneyama, J., Nishikawa, M., Katayama, H., Ichikawa, A.: Output stabilization of Takagi-Sugeno fuzzy systems. Fuzzy Sets Syst. 111(2), 253–266 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    Lam, H.K., Leung, F.H.F.: Design and stabilization of sampled-data neural-network-based control systems. IEEE Trans. Syst. Man, Cybern. Part B 36(5), 995–1005 (2006)Google Scholar
  145. 145.
    Lam, H.K., Leung, F.H.F.: Sampled-data fuzzy controller for time-delay nonlinear system: LMI-based and fuzzy model-based approaches. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37(3), 617–629 (2007)Google Scholar
  146. 146.
    Lam, H.K., Ling, W.K.: Sampled-data fuzzy controller for continuous nonlinear systems. IET Control Theory Appl. 2(1), 32–39 (2008)MathSciNetCrossRefGoogle Scholar
  147. 147.
    Lam, H.K., Seneviratne, L.D.: Tracking control of sampled-data fuzzy model-based control systems. IET Control Theory Appl. 3(1), 56–67 (2009)MathSciNetCrossRefGoogle Scholar
  148. 148.
    Lam, H.K.: Sampled-data fuzzy model-based control systems: stability analysis with consideration of analogue-to-digital converter and digital-to-analogue converter. Control Theory Appl., IET 4(7), 1131–1144 (2010)Google Scholar
  149. 149.
    Lien, C.H., Yu, K.W., Huang, C.T., Chou, P.Y., Chung, L.Y., Chen, J.D.: Robust H\(_\infty \) control for uncertain T-S fuzzy time-delay systems with sampled-data input and nonlinear perturbations. Nonlinear Anal.: Hybrid Syst. 4(3), 550–556 (2010)Google Scholar
  150. 150.
    Lee, H.J., Tomizuka, M.: Fuzzy stabilization of nonlinear systems under sampled-data feedback: an exact discrete-time model approach. IEEE Trans. Fuzzy Syst. 18(2), 251–260 (2010)Google Scholar
  151. 151.
    Wu, Z.G., Shi, P., Su, H., Chu, J.: Sampled-data fuzzy control of chaotic systems based on a T-S fuzzy model. IEEE Trans. Fuzzy Syst. 22(1), 153–163 (2014)MathSciNetCrossRefGoogle Scholar
  152. 152.
    Li, H., Jing, X., Lam, H.K., Shi, P.: Fuzzy sampled-data control for uncertain vehicle suspension systems. IEEE Trans. Fuzzy Syst. 44(7), 1111–1126 (2014)Google Scholar
  153. 153.
    Koo, G.B., Park, J.B., Joo, Y.H.: LMI condition for sampled-data fuzzy control of nonlinear systems. Electron. Lett. 51(1), 29–31 (2014)CrossRefGoogle Scholar
  154. 154.
    Wang, Z.P., Wu, H.N.: On fuzzy sampled-data control of chaotic systems via a time-dependent Lyapunov functional approach. IEEE Trans. Cybern. 45(4), 819–829 (2015)CrossRefGoogle Scholar
  155. 155.
    Jiang, X.: On sampled-data fuzzy control design approach for T-S model-based fuzzy systems by using discretization approach. Inf. Sci. 296, 307–314 (2015)MathSciNetCrossRefGoogle Scholar
  156. 156.
    Gao, H., Chen, T.: Stabilization of nonlinear systems under variable sampling: a fuzzy control approach. IEEE Trans. Fuzzy Syst. 15(5), 972–983 (2007)MathSciNetCrossRefGoogle Scholar
  157. 157.
    Yang, D., Cai, K.Y.: Reliable H\(_\infty \) nonuniform sampling fuzzy control for nonlinear systems with time delay. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(6), 1606–1613 (2008)Google Scholar
  158. 158.
    Zhu, X.L., Chen, B., Yue, D., Wang, Y.: An improved input delay approach to stabilization of fuzzy systems under variable sampling. IEEE Trans. Fuzzy Syst. 20(2), 330–341 (2012)CrossRefGoogle Scholar
  159. 159.
    Yang, F., Zhang, H., Wang, Y.: An enhanced input-delay approach to sampled-data stabilization of T-S fuzzy systems via mixed convex combination. Nonlinear Dyn. 75(3), 501–512 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  160. 160.
    Shang, Z., Zhu, X.L.: Improved H\(_\infty \) stabilization criterion for nonuniform sampling fuzzy systems. Int. J. Appl. Math. Stat. 52(1), 41–51 (2014)MathSciNetzbMATHGoogle Scholar
  161. 161.
    Wang, L.X.: Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst. 1(2), 146–155 (1993)CrossRefGoogle Scholar
  162. 162.
    Wang, L.X.: Adaptive Fuzzy Systems and Control - Design and Stability Analysis. Prentice Hall, Englewood Cliffs (1994)Google Scholar
  163. 163.
    Chen, B.S., Lee, C.H., Chang, Y.C.: H\(_\infty \) tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. 4(1), 32–43 (1996)CrossRefGoogle Scholar
  164. 164.
    Chai, T., Tong, S.: Fuzzy direct adaptive control for a class of nonlinear systems. Fuzzy Sets Syst. 103(3), 379–387 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  165. 165.
    Tsay, D.L., Chung, H.Y., Lee, C.J.: The adaptive control of nonlinear systems using the Sugeno-type of fuzzy logic. IEEE Trans. Fuzzy Syst. 7(2), 225–229 (1999)CrossRefGoogle Scholar
  166. 166.
    Yu, W.S., Sun, C.J.: Fuzzy model based adaptive control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 9(3), 413–425 (2001)MathSciNetCrossRefGoogle Scholar
  167. 167.
    Tong, S., Li, H.X.: Direct adaptive fuzzy output tracking control of nonlinear systems. Fuzzy Sets Syst. 128(1), 107–115 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  168. 168.
    Li, H.X., Tong, S.: A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans. Fuzzy Syst. 11(1), 24–34 (2003)CrossRefGoogle Scholar
  169. 169.
    Essounbouli, N., Hamzaoui, A.: Direct and indirect robust adaptive fuzzy controllers for a class of nonlinear systems. Int. J. Control Autom. Syst. 4(2), 146 (2006)Google Scholar
  170. 170.
    Lian, K.Y., Tu, H.W., Liou, J.J.: Stability conditions for LMI-based fuzzy control from viewpoint of membership functions. IEEE Trans. Fuzzy Syst. 14(6), 874–884 (2006)CrossRefGoogle Scholar
  171. 171.
    Wang, M., Chen, B., Dai, S.L.: Direct adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems. Fuzzy Sets Syst. 158(24), 2655–2670 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  172. 172.
    Kim, J.H., Hyun, E., Park, M.: Adaptive synchronization of uncertain chaotic systems based on T-S fuzzy model. IEEE Trans. Fuzzy Syst. 15(3), 359–369 (2007)CrossRefGoogle Scholar
  173. 173.
    Labiod, S., Guerra, T.M.: Adaptive fuzzy control of a class of SISO nonaffine nonlinear systems. Fuzzy Sets Syst. 158(10), 1126–1137 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  174. 174.
    Wai, R.J., Kuo, M.A., Lee, J.D.: Cascade direct adaptive fuzzy control design for a nonlinear two-axis inverted-pendulum servomechanism. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(2), 439–454 (2008)Google Scholar
  175. 175.
    Phan, P.A., Gale, T.J.: Direct adaptive fuzzy control with a self-structuring algorithm. Fuzzy Sets Syst. 159(8), 871–899 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    Chen, B., Liu, X., Liu, K., Lin, C.: Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica 45(6), 1530–1535 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  177. 177.
    Hsueh, Y.C., Su, S.F., Tao, C.W., Hsiao, C.C.: Robust L\(_2\)-gain compensative control for direct-adaptive fuzzy control-system design. IEEE Trans. Fuzzy Syst. 18(4), 661–673 (2010)CrossRefGoogle Scholar
  178. 178.
    Liu, Y.J., Tong, S.: Adaptive fuzzy control for a class of unknown nonlinear dynamical systems. Fuzzy Sets Syst. 263, 49–70 (2015)MathSciNetCrossRefGoogle Scholar
  179. 179.
    Wang, J., Rad, A.B., Chan, P.T.: Indirect adaptive fuzzy sliding mode control: Part I: fuzzy switching. Fuzzy Sets Syst. 122(1), 21–30 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  180. 180.
    Park, C.W., Cho, Y.W.: Adaptive tracking control of flexible joint manipulator based on fuzzy model reference approach. IEE Proc.-Control Theory Appl. 150(2), 198–204 (2003)Google Scholar
  181. 181.
    Blažič, S., Škrjanc, I., Matko, D.: Globally stable direct fuzzy model reference adaptive control. Fuzzy Sets Syst. 139(1), 3–33 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  182. 182.
    Park, C.W., Park, M.: Adaptive parameter estimator based on TS fuzzy models and its applications to indirect adaptive fuzzy control design. Inf. Sci. 159(1–2), 125–139 (2004)zbMATHCrossRefGoogle Scholar
  183. 183.
    Park, C.W., Cho, Y.W.: TS model based indirect adaptive fuzzy control using online parameter estimation. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34(6), 2293–2302 (2004)Google Scholar
  184. 184.
    Kung, C.C., Chen, T.H.: Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical systems. Fuzzy Sets Syst. 155(2), 292–308 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  185. 185.
    Zhang, K., Jiang, B., Staroswiecki, M.: Dynamic output feedback-fault tolerant controller design for Takagi-Sugeno fuzzy systems with actuator faults. IEEE Trans. Fuzzy Syst. 18(1), 194–201 (2010)CrossRefGoogle Scholar
  186. 186.
    Han, C., Wu, L., Lam, H.K., Zeng, Q.: Nonfragile control with guaranteed cost of T-S fuzzy singular systems based on parallel distributed compensation. IEEE Trans. Fuzzy Syst. 22(5), 1183–1196 (2014)CrossRefGoogle Scholar
  187. 187.
    Qiu, J., Feng, G., Gao, H.: Fuzzy model-based piecewise static-output-feedback controller design for networked nonlinear systems. IEEE Trans. Fuzzy Syst. 18(5), 919–934 (2010)CrossRefGoogle Scholar
  188. 188.
    Qiu, J., Feng, G., Gao, H.: Asynchronous output-feedback control of networked nonlinear systems with multiple packet dropouts: T-S fuzzy affine model-based approach. IEEE Trans. Fuzzy Syst. 19(6), 1014–1030 (2011)CrossRefGoogle Scholar
  189. 189.
    Yang, F., Zhang, H.: T-S model-based relaxed reliable stabilization of networked control systems with time-varying delays under variable sampling. Int. J. Fuzzy Syst. 13(4), 260–269 (2011)MathSciNetGoogle Scholar
  190. 190.
    Peng, C., Han, Q.L., Yue, D.: To transmit or not to transmit: a discrete event-triggered communication scheme for networked Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 21(1), 164–170 (2013)CrossRefGoogle Scholar
  191. 191.
    Wu, L., Ho, D.W.C.: Fuzzy filter design for Itô stochastic systems with application to sensor fault detection. IEEE Trans. Fuzzy Syst. 17(1), 233–242 (2009)CrossRefGoogle Scholar
  192. 192.
    Liu, M., Cao, X., Shi, P.: Fuzzy model-based fault-tolerant design for nonlinear stochastic systems against simultaneous sensor and actuator faults. IEEE Trans. Fuzzy Syst. 21(5), 789–799 (2013)CrossRefGoogle Scholar
  193. 193.
    Liu, M., Cao, X., Shi, P.: Fault estimation and tolerant control for fuzzy stochastic systems. IEEE Trans. Fuzzy Syst. 21(2), 221–229 (2013)CrossRefGoogle Scholar
  194. 194.
    Sheng, L., Gao, M., Zhang, W.: Dissipative control for Markov jump non-linear stochastic systems based on T-S fuzzy model. Int. J. Syst. Sci. 45(5), 1213–1224 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  195. 195.
    Benzaouia, A., Hmamed, A., Hajjaji, E.L.: A., : Stabilization of controlled positive discrete-time T-S fuzzy systems by state feedback control. Int. J. Adapt. Control. Signal Process. 24(12), 1091–1106 (2010)MathSciNetzbMATHGoogle Scholar
  196. 196.
    Mao, Y., Zhang, H., Dang, C.: Stability analysis and constrained control of a class of fuzzy positive systems with delays using linear copositive Lyapunov functional. Circuits Syst. Signal Process. 31(5), 1863–1875 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  197. 197.
    Wu, Y., Luo, H., Zhang, H.: Stability analysis of discrete-time fuzzy positive systems with time delays. J. Intell. Fuzzy Syst. 25(4), 893–905 (2013)MathSciNetzbMATHGoogle Scholar
  198. 198.
    Mao, Y., Zhang, H., Qin, Y., Dang, C.: Stability and constrained control of a class of discrete-time fuzzy positive systems with time-varying delays. Circuits Syst. Signal Process. 32(2), 889–904 (2013)MathSciNetCrossRefGoogle Scholar
  199. 199.
    Benzaouia, A., Mesquine, F., Benhayoun, M., Schulte, H., Georg, S.: Stabilization of positive constrained T-S fuzzy systems: application to a buck converter. J. Frankl. Inst. 351(8), 4111–4123 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  200. 200.
    Fadali, M.S., Jafarzadeh, S.: Stability analysis of positive interval type-2 TSK systems with application to energy markets. IEEE Trans. Fuzzy Syst. 22(4), 1031–1038 (2014)CrossRefGoogle Scholar
  201. 201.
    Roubos, J.A., Mollov, S., Babuška, R., Verbruggen, H.B.: Fuzzy model-based predictive control using Takagi-Sugeno models. Int. J. Approx. Reason. 22(1), 3–30 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  202. 202.
    Espinosa, J.J., Vandewalle, J.: Predictive control using fuzzy models. Advances in Soft Computing, pp. 187–200. Springer, New York (1999)Google Scholar
  203. 203.
    Huang, Y.L., Lou, H.H., Gong, J.P., Edgar, T.F.: Fuzzy model predictive control. IEEE Trans. Fuzzy Syst. 8(6), 665–678 (2000)CrossRefGoogle Scholar
  204. 204.
    Mollov, S., Babuska, R., Abonyi, J., Verbruggen, H.B.: Effective optimization for fuzzy model predictive control. IEEE Trans. Fuzzy Syst. 12(5), 661–675 (2004)CrossRefGoogle Scholar
  205. 205.
    Li, N., Li, S.Y., Xi, Y.G.: Multi-model predictive control based on the Takagi-Sugeno fuzzy models: a case study. Inf. Sci. 165(3), 247–263 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  206. 206.
    Mazinan, A.H., Sadati, N.: Multiple modeling and fuzzy predictive control of a tubular heat exchanger system. WSEAS Trans. Syst. Control 3(4), 249–258 (2008)Google Scholar
  207. 207.
    Xia, Y., Yang, H., Shi, P., Fu, M.: Constrained infinite-horizon model predictive control for fuzzy discrete-time systems. IEEE Trans. Fuzzy Syst. 18(2), 429–436 (2010)Google Scholar
  208. 208.
    Wang, B., Zhang, J., Zhu, D., Chen, D.: Takagi-Sugeno fuzzy predictive control for a class of nonlinear system with constrains and disturbances. J. Comput. Nonlinear Dyn. 10(5), 054505 (2015)CrossRefGoogle Scholar
  209. 209.
    Wang, Y.W., Guan, Z.H., Wang, H.O.: Impulsive synchronization for Takagi-Sugeno fuzzy model and its application to continuous chaotic system. Phys. Lett. A 339(3), 325–332 (2005)zbMATHCrossRefGoogle Scholar
  210. 210.
    Liu, X., Zhong, S.: T-S fuzzy model-based impulsive control of chaotic systems with exponential decay rate. Phys. Lett. A 370(3), 260–264 (2007)zbMATHCrossRefGoogle Scholar
  211. 211.
    Zhong, Q., Bao, J., Yu, Y., Liao, X.: Impulsive control for T-S fuzzy model-based chaotic systems. Math. Comput. Simul. 79(3), 409–415 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  212. 212.
    Jiang, H.B., Yu, J.J., Zhou, C.G.: Robust fuzzy control of nonlinear fuzzy impulsive systems with time-varying delay. IET Control Theory Appl. 2(8), 654–661 (2008)MathSciNetCrossRefGoogle Scholar
  213. 213.
    Zheng, Y., Chen, G.: Fuzzy impulsive control of chaotic systems based on TS fuzzy model. Chaos Solitons Fractals 39(4), 2002–2011 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  214. 214.
    Liu, Y., Zhao, S., Lu, J.: A new fuzzy impulsive control of chaotic systems based on T-S fuzzy model. IEEE Trans. Fuzzy Syst. 19(2), 393–398 (2011)MathSciNetCrossRefGoogle Scholar
  215. 215.
    Zhang, H., Yan, H., Liu, T., Chen, Q.: Fuzzy controller design for nonlinear impulsive fuzzy systems with time delay. IEEE Trans. Fuzzy Syst. 19(5), 844–856 (2011)CrossRefGoogle Scholar
  216. 216.
    Khalil, H.K., Grizzle, J.W.: Nonlinear Syst. Prentice hall, Englewood Cliffs (1996)Google Scholar
  217. 217.
    Vidyasagar, M.: Nonlinear Systems Analysis. Society for Industrial Mathematics, Philadelphia (2002)zbMATHCrossRefGoogle Scholar
  218. 218.
    Zhang, H., Xie, X.: Relaxed stability conditions for continuous-time T-S fuzzy control systems via augmented multi-indexed matrix approach. IEEE Trans. Fuzzy Syst. 19(3), 478–492 (2011)CrossRefGoogle Scholar
  219. 219.
    Ding, B.: Homogeneous polynomially nonquadratic stabilization of discrete-time Takagi-Sugeno systems via nonparallel distributed compensation law. IEEE Trans. Fuzzy Syst. 18(5), 994–1000 (2010)CrossRefGoogle Scholar
  220. 220.
    Papachristodoulou, A., Prajna, S.: A tutorial on sum of squares techniques for system analysis. In: Proceedings of the American Control Conference (ASCC), pp. 2686–2700. Portland, OR, USA (2005)Google Scholar
  221. 221.
    Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Nonlinear control synthesis by sum-of-squares optimization: a lyapunov-based approach. In: Proceedings of the Asian Control Conference (ASCC), vol. 1, pp. 157–165. Melbourne, Australia (2004)Google Scholar
  222. 222.
    Cao, K., Gao, X., Vasilakos, T., Pedrycz, W.: Analysis of stability and robust stability of polynomial fuzzy model-based control systems using a sum-of-squares approach. Soft. Comput. 18(3), 433–442 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  223. 223.
    Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOSTOOLS: a general purpose sum of squares programming solver. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 1, pp. 741–746. Las Vegas, Nevada, USA (2002)Google Scholar
  224. 224.
    Prajna, S., Papachristodoulou, A., Parrilo, P.A.: SOSTOOLS - sum of squares optimization toolbox, user’s guide (2002)Google Scholar
  225. 225.
    Narimani, M., Lam, H.K.: SOS-based stability analysis of polynomial fuzzy model-based control systems via polynomial membership functions. IEEE Trans. Fuzzy Syst. 18(5), 862–871 (2010)CrossRefGoogle Scholar
  226. 226.
    Liu, C., Lam, H.K., Zhang, X., Li, H., Ling, S.H.: Relaxed stability conditions based on Taylor series membership functions for polynomial fuzzy model-based control systems. In: Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2014), pp. 2111–2118. IEEE (2014)Google Scholar
  227. 227.
    Lam, H.K., Wu, L., Zhao, Y.: Linear matrix inequalities-based membership function-dependent stability analysis for non-parallel distributed compensation fuzzy model-based control systems. IET Control Theory Appl. 8(8), 614–625 (2014)MathSciNetCrossRefGoogle Scholar
  228. 228.
    Johansson, M., Rantzer, A., Arzen, K.E.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Syst. 7(6), 713–722 (1999)CrossRefGoogle Scholar
  229. 229.
    Feng, M., Harris, C.J.: Piecewise Lyapunov stability conditions of fuzzy systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 31(2), 259–262 (2001)Google Scholar
  230. 230.
    Feng, G.: Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 11(5), 605–612 (2003)CrossRefGoogle Scholar
  231. 231.
    Feng, G.: H\(_\infty \) controller design of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34(1), 283–292 (2004)Google Scholar
  232. 232.
    Feng, G., Chen, C.L., Sun, D., Zhu, Y.: H\(_\infty \) controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities. IEEE Trans. Fuzzy Syst. 13(1), 94–103 (2005)CrossRefGoogle Scholar
  233. 233.
    Ohtake, H., Tanaka, K., Wang, H.O.: Switching fuzzy controller design based on switching Lyapunov function for a class of nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 36(1), 13–23 (2006)Google Scholar
  234. 234.
    Lendek, Z., Lauber, J., Guerra, T.M.: Periodic Lyapunov functions for periodic T-S systems. Syst. Control Lett. 62(4), 303–310 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  235. 235.
    Mao, Y., Zhang, H., Xu, S.: Exponential stability and asynchronous stabilization of a class of switched nonlinear system via T-S fuzzy model. IEEE Trans. Fuzzy Syst. 22(4), 817–828 (2014)CrossRefGoogle Scholar
  236. 236.
    Tanaka, K., Hori, T., Wang, H.O.: A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Syst. 11(4), 582–589 (2003)CrossRefGoogle Scholar
  237. 237.
    Guerra, T.M., Vermeiren, L.: LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form. Automatica 40(5), 823–829 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  238. 238.
    Ding, B.C., Sun, H.X., Yang, P.: Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno’s form. Automatica 42(3), 503–508 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  239. 239.
    Rhee, B.J., Won, S.: A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design. Fuzzy Sets Syst. 157(9), 1211–1228 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  240. 240.
    Tanaka, K., Ohtake, H., Wang, H.O.: A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions. IEEE Trans. Fuzzy Syst. 15(3), 333–341 (2007)CrossRefGoogle Scholar
  241. 241.
    Li, J., Zhou, S., Xu, S.: Fuzzy control system design via fuzzy Lyapunov functions. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(6), 1657–1661 (2008)Google Scholar
  242. 242.
    Bernal, M., Guerra, T.M.: Generalized nonquadratic stability of continuous-time Takagi-Sugeno models. IEEE Trans. Fuzzy Syst. 18(4), 815–822 (2010)CrossRefGoogle Scholar
  243. 243.
    Mozelli, L.A., Palhares, R.M., Avellar, G.S.C.: A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems. Inf. Sci. 179(8), 1149–1162 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  244. 244.
    Chang, X.H., Yang, G.H.: Relaxed stabilization conditions for continuous-time Takagi-Sugeno fuzzy control systems. Inf. Sci. 180(17), 3273–3287 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  245. 245.
    Mozelli, L.A., Palhares, R.M., Mendes, E.M.A.M.: Equivalent techniques, extra comparisons and less conservative control design for Takagi-Sugeno (T-S) fuzzy systems. IET Control Theory Appl. 4(12), 2813–2822 (2010)MathSciNetCrossRefGoogle Scholar
  246. 246.
    Lee, D.H., Park, J.B., Joo, Y.H.: Improvement on nonquadratic stabilization of discrete-time Takagi-Sugeno fuzzy systems: multiple-parameterization approach. IEEE Trans. Fuzzy Syst. 18(2), 425–429 (2010)Google Scholar
  247. 247.
    Lam, H.K., Seneviratne, L.D., Ban, X.: Fuzzy control of non-linear systems using parameter-dependent polynomial fuzzy model. IET Control Theory Appl. 6(11), 1645–1653 (2012)MathSciNetCrossRefGoogle Scholar
  248. 248.
    Lam, H.K., Lauber, J.: Membership-function-dependent stability analysis of fuzzy model-based control systems using fuzzy Lyapunov functions. Inf. Sci. 232, 253–266 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  249. 249.
    Xie, X., Ma, H., Zhao, Y., Ding, D.W., Wang, Y.: Control synthesis of discrete-time T-S fuzzy systems based on a novel non-PDC control scheme. IEEE Trans. Fuzzy Syst. 21(1), 147–157 (2013)CrossRefGoogle Scholar
  250. 250.
    Faria, F.A., Silva, G.N., Oliveira, V.A.: Reducing the conservatism of LMI-based stabilisation conditions for T-S fuzzy systems using fuzzy Lyapunov functions. Int. J. Syst. Sci. 44(10), 1956–1969 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  251. 251.
    Campos, V.C.S., Souza, F.O., Tôrres, L.A.B., Palhares, R.M.: New stability conditions based on piecewise fuzzy Lyapunov functions and tensor product transformations. IEEE Trans. Fuzzy Syst. 21(4), 748–760 (2013)CrossRefGoogle Scholar
  252. 252.
    Duong, C.C., Guelton, K., Manamanni, N.: A SOS based alternative to LMI approaches for non-quadratic stabilization of continuous-time Takagi-Sugeno fuzzy systems. In: Proceedings of the 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2013), pp. 1–7. IEEE (2013)Google Scholar
  253. 253.
    Kim, S.H.: Relaxation technique for a T-S fuzzy control design based on a continuous-time fuzzy weighting-dependent Lyapunov function. IEEE Trans. Fuzzy Syst. 21(4), 761–766 (2013)CrossRefGoogle Scholar
  254. 254.
    Zhang, B.: Stability control of flexible joint robot based T-S fuzzy model using fuzzy Lyapunov function. J. Converg. Inf. Technol. 8(1) (2013)Google Scholar
  255. 255.
    Cao, K., Gao, X.Z., Lam, H.K., Vasilakos, A.V., Pedrycz, W.: A new relaxed stability condition for Takagi-Sugeno fuzzy control systems using quadratic fuzzy Lyapunov functions and staircase membership functions. Int. J. Fuzzy Syst. 16(3), 327 (2014)MathSciNetGoogle Scholar
  256. 256.
    Lee, D.H., Joo, Y.H., Tak, M.H.: Local stability analysis of continuous-time Takagi-Sugeno fuzzy systems: A fuzzy Lyapunov function approach. Inf. Sci. 257, 163–175 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  257. 257.
    Chang, W.J., Chang, Y.C., Ku, C.C.: Passive fuzzy control via fuzzy integral Lyapunov function for nonlinear ship drum-boiler systems. J. Dyn. Syst. Meas. Control 137(4), 041008 (2015)CrossRefGoogle Scholar
  258. 258.
    Tognetti, E.S., Oliveira, R.C.L.F., Peres, P.L.D.: H\(_2\) and H\(_\infty \) nonquadratic stabilisation of discrete-time Takagi-Sugeno systems based on multi-instant fuzzy Lyapunov functions. Int. J. Syst. Sci. 46(1), 76–87 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  259. 259.
    Zhao, X., Zhang, L., Shi, P., Karimi, H.: Novel stability criteria for T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 22(2), 425–429 (2013)Google Scholar
  260. 260.
    Sala, A., Ariño, C.: Relaxed stability and performance conditions for Takagi-Sugeno fuzzy systems with knowledge on membership function overlap. IEEE Trans. Syst. Man Cybern. Part : Cybern. 37(3), 727–732 (2007)Google Scholar
  261. 261.
    Sala, A., Ariño, C.: Relaxed stability and performance LMI conditions for Takagi-Sugeno fuzzy systems with polynomial constraints on membership function shapes. IEEE Trans. Fuzzy Syst. 16(5), 1328–1336 (2008)CrossRefGoogle Scholar
  262. 262.
    Lam, H., Lauber, J.: Stability analysis of nonlinear-function fuzzy model-based control systems. J. Frankl. Inst. 349(10), 3102–3120 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  263. 263.
    Lam, H.K., Tsai, S.H.: Stability analysis of polynomial-fuzzy model-based control systems with mismatched premise membership functions. IEEE Trans. Fuzzy Syst. 22(1), 223–229 (2014)CrossRefGoogle Scholar
  264. 264.
    Lam, H.K., Liu, C., Wu, L., Zhao, X.: Polynomial fuzzy model-based control systems: Stability analysis via approximated membership functions considering sector nonlinearity of control input. IEEE Trans. Fuzzy Syst. (2015, Accepted to appear)Google Scholar
  265. 265.
    Boyd, S.P.: Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)zbMATHCrossRefGoogle Scholar
  266. 266.
    El Ghaoui, L., Niculescu, S.I.: Advances in linear matrix inequality methods in control. Society for Industrial Mathematics (2000)Google Scholar
  267. 267.
    Narimani, M., Lam, H.K.: Relaxed LMI-based stability conditions for Takagi-Sugeno fuzzy control systems using regional-membership-function-shape-dependent analysis approach. IEEE Trans. Fuzzy Syst. 17(5), 1221–1228 (2009)CrossRefGoogle Scholar
  268. 268.
    Kruszewski, A., Sala, A., Guerra, T., Arino, C.: A triangulation approach to asymptotically exact conditions for fuzzy summations. IEEE Trans. Fuzzy Syst. 17(5), 985–994 (2009)CrossRefGoogle Scholar
  269. 269.
    Narimani, M., Lam, H.K., Dilmaghani, R., Wolfe, C.: LMI-based stability analysis of fuzzy model-based control systems using approximated polynomial membership functions. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(3), 713–724 (2011)Google Scholar
  270. 270.
    Zhao, Y., Xiao, B., Liu, C., Li, H., Lam, H.K.: Relaxed LMI-based stability conditions for fuzzy model-based control systems under imperfect premise matching: Approximated membership function approach. In: Proceedings of the 2014 11th World Congress on Intelligent Control and Automation (WCICA 2014), pp. 251–256. IEEE (2014)Google Scholar
  271. 271.
    Precup, R.E., Hellendoorn, H.: A survey on industrial applications of fuzzy control. Comput. Ind. 62(3), 213–226 (2011)CrossRefGoogle Scholar
  272. 272.
    Rao, M.V.C., Prahlad, V.: A tunable fuzzy logic controller for vehicle-active suspension systems. Fuzzy Sets Syst. 85(1), 11–21 (1997)CrossRefGoogle Scholar
  273. 273.
    Cao, J., Liu, H., Li, P., Brown, D.: An interval type-2 fuzzy logic controller for quarter-vehicle active suspensions. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 222(8), 1361 (2008)Google Scholar
  274. 274.
    Cao, J., Li, P., Liu, H.: An interval fuzzy controller for vehicle active suspension systems. IEEE Trans. Intell. Transp. Syst. 11(4), 885–895 (2010)MathSciNetCrossRefGoogle Scholar
  275. 275.
    Su, X., Yang, X., Shi, P., Wu, L.: Fuzzy control of nonlinear electromagnetic suspension systems. Mechatronics 24(4), 328–335 (2014)CrossRefGoogle Scholar
  276. 276.
    Malki, H.A., Misir, D., Feigenspan, D., Chen, G.: Fuzzy pid control of a flexible-joint robot arm with uncertainties from time-varying loads. IEEE Trans. Control Syst. Technol. 5(3), 371–378 (1997)CrossRefGoogle Scholar
  277. 277.
    Chang, W.J., Shih, Y.J.: Fuzzy control of multiplicative noised nonlinear systems subject to actuator saturation and H\(_\infty \) performance constraints. Neurocomputing 148, 512–520 (2015)CrossRefGoogle Scholar
  278. 278.
    Chiu, C.S., Chiang, T.S.: Robust output regulation of T-S fuzzy systems with multiple time-varying state and input delays. IEEE Trans. Fuzzy Syst. 17(4), 962–975 (2009)MathSciNetCrossRefGoogle Scholar
  279. 279.
    So, W.C., Tse, C.K., Lee, Y.S.: Development of a fuzzy logic controller for DC/DC converters: design, computer simulation, and experimental evaluation. IEEE Trans. Power Electron. 11(1), 24–32 (1996)CrossRefGoogle Scholar
  280. 280.
    Leung, F.H.F., Wong, L.K., Tam, P.K.S., Lam, H.K.: Realization of analog fuzzy logic control for PWM boost converters. J. Circuits Syst. Comput. 8(3), 411–419 (1998)CrossRefGoogle Scholar
  281. 281.
    Lin, P.Z., Lin, C.M., Hsu, C.F., Lee, T.T.: Type-2 fuzzy controller design using a sliding-mode approach for application to DC-DC converters. IEE Proc.-Electr. Power Appl. 152(6), 1482–1488 (2005)Google Scholar
  282. 282.
    Lian, K.Y., Liou, J.J., Huang, C.Y.: LMI-based integral fuzzy control of DC-DC converters. IEEE Trans. Fuzzy Syst. 14(1), 71–80 (2006)CrossRefGoogle Scholar
  283. 283.
    Leung, F.H.F., Lam, H.K., Tam, P.K.S.: Fuzzy control of DC-DC switching converters: stability and robustness analysis. Aust. J. Electr. Electron. Eng. 4(1), 91–99 (2008)Google Scholar
  284. 284.
    Lam, H.K., Tan, S.C.: Stability analysis of fuzzy model-based control systems: application on regulation of switching DC-DC converter. IET Control Theory Appl. 3(8), 1093–1106 (2009)MathSciNetCrossRefGoogle Scholar
  285. 285.
    Elmas, C., Deperlioglu, O., Sayan, H.H.: Adaptive fuzzy logic controller for DC-DC converters. Expert Syst. Appl. 36(2), 1540–1548 (2009)CrossRefGoogle Scholar
  286. 286.
    Lian, K.Y., Hong, C.W.: Current-sensorless flyback converters using integral T-S fuzzy approach. Int. J. Fuzzy Syst. 15(1), 66–74 (2013)MathSciNetGoogle Scholar
  287. 287.
    Vu, N.T.T., Yu, D.Y., Choi, H.H., Jung, J.W.: T-S fuzzy-model-based sliding-mode control for surface-mounted permanent-magnet synchronous motors considering uncertainties. IEEE Trans. Ind. Electron. 60(10), 4281–4291 (2013)CrossRefGoogle Scholar
  288. 288.
    Wang, M., Chen, B., Liu, X., Shi, P.: Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems. Fuzzy Sets Syst. 159(8), 949–967 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  289. 289.
    Vembarasan, V., Balasubramaniam, P.: Chaotic synchronization of Rikitake system based on T-S fuzzy control techniques. Nonlinear Dyn. 74(1–2), 31–44 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  290. 290.
    Lee, T.H., Lam, H.K., Leung, F.H.F., Tam, P.K.S.: A practical fuzzy logic controller for the path tracking of wheeled mobile robots. IEEE Control Syst. Mag. 23(2), 60–65 (2003)CrossRefGoogle Scholar
  291. 291.
    Ordónez, R., Passino, K.M.: Stable multi-input multi-output adaptive fuzzy/neural control. IEEE Trans. Fuzzy Syst. 7(3), 345–353 (1999)CrossRefGoogle Scholar
  292. 292.
    Leung, F.H.F., Lam, H.K., Ling, S.H., Tam, P.K.S.: Optimal and stable fuzzy controllers for nonlinear systems based on an improved genetic algorithm. IEEE Trans. Ind. Electron. 51(1), 172–182 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations