Skip to main content

Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

  • Chapter
  • First Online:
  • 551 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The formation control of networked mobile robots is an example of multi-agent systems in which a group of robots can achieve a common objective (the formation) by applying distributed control laws and event-based communications. This chapter gives a description of the problem, some of most common approaches to model these systems, and how the distributed event-triggered policies can be useful to reduce communication. An interactive simulator named MaSS (Multi-agent Systems Simulator) has been developed to emulate this kind of setups. The user interface of this tool is described, and the software implementation of the real counterparts is given. Some examples of usage are given to illustrate how the network and the model of the system can be configured interactively by the user. The DEBC algorithms have been also implemented in a testbed of real mobile robots, and the results are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adept MobileRobots. Website (2013). http://www.mobilerobots.com/

  2. Correll N, Sempo G, Lopez de Meneses Y, Halloy J, Deneubourg JL (2006) Swistrack: a tracking tool for multi-unit robotic and biological systems. In: International conference on intelligent robots and systems, Beijing

    Google Scholar 

  3. Demir O, Lunze J (2012) Cooperative control of multi-agent systems with event-based communication. In: American control conference, pp 4504–4509, Montreal

    Google Scholar 

  4. Di Marco P (2010) Modeling and design of multi-hop energy efficient wireless networks for control applications. Licentiate thesis, Royal Institute of Technology (KTH)

    Google Scholar 

  5. Esquembre F (2004) Easy java simulations: a software tool to create scientific simulations in java. Comput Phys Commun 156(2):199–204

    Article  Google Scholar 

  6. Fax JA, Murray RM (2004) Information flow and cooperative control of vehicle formations. IEEE Trans Autom Control 49(9):1465–1476

    Article  MathSciNet  Google Scholar 

  7. Fabregas E (2013) Plataformas de experimentación virtual y remota: Aplicaciones de control y robótica. Ph.D. thesis, UNED

    Google Scholar 

  8. Heinzelman W, Chandrakasan A, Balakrishnan H (2002) An application speciffic protocol architecture for wireless microsensor networks. IEEE Trans Wirel Commun 1(4):660–670

    Article  Google Scholar 

  9. Hu J, Hong Y (2007) Leader-following coordination of multi-agent systems with coupling time delays. Phys A 374:853–863

    Article  Google Scholar 

  10. Johnson DB, Maltz DA (1996) Dynamic source routing in ad hoc wireless networks. Mobile Computing. Kluwer Academic Publishers, Berlin, pp 153–181

    Chapter  Google Scholar 

  11. Ko J, Dawson-Haggerty S, Hui J, Culler D, Levis P, Terzis A (2011) Connecting low power and lossy networks to the internet. IEEE Commun Mag Recent Adv IETF Stand 49(4):96–101

    Google Scholar 

  12. Lafferriere G, Williams A, Caughman J, Veerman JJP (2005) Decentralized control of vehicle formations. Syst Control Lett 54(9):899–910

    Article  MathSciNet  MATH  Google Scholar 

  13. Lawton JRT, Beard RW, Young BJ (2003) A decentralized approach to formation maneuvers. IEEE Trans Robot Autom 19(6):933–941

    Article  Google Scholar 

  14. Lochmatter T, Roduit P, Cianci C, Correll N (2008) source tracking software for multi-agent systems. In: International conference on intelligent robots and systems, Nice

    Google Scholar 

  15. Li Z, Duan Z, Huang L (2009) Leader-follower consensus of multi-agent systems. In: American Control Conference, pp 3256–3261

    Google Scholar 

  16. Mas I (2011) Cluster Space Framework for Multi-Robot Formation Control. Ph.D. dissertation, Santa Clara University, School of Engineering

    Google Scholar 

  17. mOway. moway user manual v2.1.0. Website (2010). http://www.adrirobot.it/moway/pdf/mOway

  18. mOway. Website (2013). http://moway-robot.com/en/

  19. Nethi S, Pohjola M, Eriksson L, Jäntt R (2007) Platform for emulating networked control systems in laboratory environments. In International Symposium on a World of Wireless, Mobile and Multimedia Networks, Helsinki June

    Book  Google Scholar 

  20. Ni W, Cheng D (2010) Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst Control Lett 59(3):209–217

    Article  MathSciNet  MATH  Google Scholar 

  21. ns-2 the Network Simulator. Website (2012). http://nsnam.isi.edu/nsnam/index.php

  22. Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 49(9):1520–1533

    Article  MathSciNet  Google Scholar 

  23. Olfati-Saber R, Fax J, Murray R (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233

    Article  Google Scholar 

  24. Perkins CE, Royer EM (1997) Ad-hoc on-demand distance vector routing. In: 2nd IEEE workshop on mobile computing systems and applications, pp 90–100

    Google Scholar 

  25. Ren W, Atkins E (2007) Distributed multi-vehicle coordinated control via local information exchange. Int J Robust Nonlinear Control 17(10):1002–1033

    Article  MathSciNet  MATH  Google Scholar 

  26. Ren W, Moore K, Chen Y (2006) High-order consensus algorithms in cooperative vehicle systems. In: International conference on networking, sensing and control, pp 457–462

    Google Scholar 

  27. Ren W, Beard R, Atkins E (2007) Information consensus in multivehicle cooperative control. IEEE Control Syst Mag 27(2):71–82

    Article  Google Scholar 

  28. Seo JH, Shim H, Back J (2009) Consensus of high-order linear systems using dynamic output feedback compensator: low gain approach. Automatica 45(11):2659–2664

    Article  MathSciNet  MATH  Google Scholar 

  29. Seyboth G (2010) Event-based control for multi-agent systems. Diploma thesis, Automatic Control Lab, Royal Institute of Technology (KTH), Sweden

    Google Scholar 

  30. Seyboth GS, Dimarogonas DV, Johansson KH (2013) Event-based broadcasting for multi-agent average consensus. Automatica 49(1):245–252

    Article  MathSciNet  MATH  Google Scholar 

  31. Vanni F, Aguiar AP, Pascoal AM (2008) Netmarsys- networked marine systems simulator. Technical Report WP6-0108, Instituto Superior Tecnico (Lisbon), May 2008

    Google Scholar 

  32. Vaughan R, Howard A (2008) The player project. http://robots.mobilerobots.com/wiki/MobileSim

  33. Wang Z, Liu L, Zhou M (2005) Protocols and applications of ad-hoc robot wireless communication networks: An overview. Int J Intell Control Syst 10(4):296–303

    Google Scholar 

  34. Winter T, Thubert P, Brandt A, Hui J, Kelsey R, Levis P, Pister K, Struik R, Vasseur J (2012) RPL: IPv6 routing protocol for low power and lossy networks

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Guinaldo Losada .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guinaldo Losada, M. (2016). Simulation Tools and Application Example of the DEBC: Networked Mobile Robots. In: Contributions to Networked and Event-Triggered Control of Linear Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-34081-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34081-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34080-7

  • Online ISBN: 978-3-319-34081-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics