Nausea and Vomiting Related to Autonomic Nervous System Disorders

  • Thomas L. AbellEmail author
  • Dipendra Parajuli


The pathophysiology of nausea and vomiting from gastroparesis and cyclic vomiting syndrome often involves autonomic pathways. Nongastrointestinal disorders such as orthostatic intolerance and postural orthostatic tachycardia syndrome also present with nausea and vomiting. Serotonin 5-HT3 antagonists and neurokinin NK1 antagonists are medications to treat nausea and vomiting that also work on autonomic pathways. Gastric electrical stimulation used to treat medically refractory nausea and vomiting modulates autonomic nervous system activity. Treatment of documented orthostatic intolerance alleviates nausea and vomiting. Complete autonomic testing or simpler office-based testing may help to identify autonomic abnormalities and to help guide management in these patients.


Autonomic nervous system Nausea Vomiting Cyclic vomiting syndrome Postural orthostatic tachycardia syndrome Orthostatic intolerance Gastric electrical stimulation Adrenergic receptor Cholinergic receptor Enteric nervous system 



5 Hydroxy tryptamine




Autonomic function testing


Autonomic nervous system


Cardiovascular autonomic system




Chemotherapy-induced nausea and vomiting


Central nervous system


Corticotropin-releasing factor


Chemoreceptor trigger zone


Cyclical vomiting syndrome


Diabetic autonomic neuropathy


Dorsal motor nucleus


Enteric nervous system


γ-Aminobutyric acid






Heart rate variability


Head-up tilt


Interstitial cells of Cajal


Intragastric pressure


Lower esophageal sphincter






Neurally mediated hypotension


Neuronal nitric oxide synthase


Nitric oxide


Nucleus tractus solitarius


Orthostatic intolerance


Peripheral nervous system


Postural orthostatic tachycardia syndrome


Quantitative sudomotor axon reflex test


Type 1 diabetes mellitus


Type 2 diabetes mellitus


Total symptom score


Thermoregulatory sweat test


Vasoactive intestinal polypeptide



The authors would like to thank Dr. Pradeepa Poudyal and Catherine McBride for help with manuscript preparation.


  1. 1.
    Camilleri M, Bharucha AE. Gastrointestinal dysfunction in neurologic disease. Semin Neurol. 1996;16(3):203–16. doi: 10.1055/s-2008-1040977.PubMedCrossRefGoogle Scholar
  2. 2.
    Sandroni P, Opfer-Gehrking TL, McPhee BR, Low PA. Postural tachycardia syndrome: clinical features and follow-up study. Mayo Clin Proc. 1999;74(11):1106–10. doi: 10.4065/74.11.1106.PubMedCrossRefGoogle Scholar
  3. 3.
    Schondorf R, Low PA. Idiopathic postural orthostatic tachycardia syndrome: an attenuated form of acute pandysautonomia? Neurology. 1993;43(1):132–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Weimer LH, Williams O. Syncope and orthostatic intolerance. Med Clin North Am. 2003;87(4):835–65.PubMedCrossRefGoogle Scholar
  5. 5.
    Sullivan SD, Hanauer J, Rowe PC, Barron DF, Darbari A, Oliva-Hemker M. Gastrointestinal symptoms associated with orthostatic intolerance. J Pediatr Gastroenterol Nutr. 2005;40(4):425–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Hammam E, Dawood T, Macefield VG. Low-frequency galvanic vestibular stimulation evokes two peaks of modulation in skin sympathetic nerve activity. Exp Brain Res. 2012;219(4):441–6. doi: 10.1007/s00221-012-3090-z.PubMedCrossRefGoogle Scholar
  7. 7.
    Himi N, Koga T, Nakamura E, Kobashi M, Yamane M, Tsujioka K. Differences in autonomic responses between subjects with and without nausea while watching an irregularly oscillating video. Auton Neurosci. 2004;116(1–2):46–53. doi: 10.1016/j.autneu.2004.08.008.PubMedCrossRefGoogle Scholar
  8. 8.
    Morrow GR, Hickok JT, DuBeshter B, Lipshultz SE. Changes in clinical measures of autonomic nervous system function related to cancer chemotherapy-induced nausea. J Auton Nerv Syst. 1999;78(1):57–63.PubMedCrossRefGoogle Scholar
  9. 9.
    Chelimsky G, Boyle JT, Tusing L, Chelimsky TC. Autonomic abnormalities in children with functional abdominal pain: coincidence or etiology? J Pediatr Gastroenterol Nutr. 2001;33(1):47–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Furness JB. The organisation of the autonomic nervous system: peripheral connections. Auton Neurosci. 2006;130(1–2):1–5. doi: 10.1016/j.autneu.2006.05.003.PubMedCrossRefGoogle Scholar
  11. 11.
    Langley JN. The autonomic nervous system. Brain. 1903;26(1):1–26. doi: 10.1093/brain/26.1.1.CrossRefGoogle Scholar
  12. 12.
    Langley JN. The autonomic nervous system. Cambridge: W. Heffer; 1921.Google Scholar
  13. 13.
    Mancall EL, Brock DG. Gray’s clinical neuroanatomy. 1st ed. Philadelphia: Elsevier Saunders; 2011.Google Scholar
  14. 14.
    Yamada T, Alpers DH. Textbook of gastroenterology. 5th ed. Chichester, West Sussex/Hoboken: Blackwell Pub.; 2009.Google Scholar
  15. 15.
    Szurszewski JH, Ermilov LG, Miller SM. Prevertebral ganglia and intestinofugal afferent neurones. Gut. 2002;51 Suppl 1:i6–10.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Foubert J, Vaessen G. Nausea: the neglected symptom? Eur J Oncol Nurs. 2005;9(1):21–32. doi: 10.1016/j.ejon.2004.03.006.PubMedCrossRefGoogle Scholar
  17. 17.
    Roila F, Herrstedt J, Aapro M, Gralla RJ, Einhorn LH, Ballatori E, et al. Guideline update for MASCC and ESMO in the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting: results of the Perugia consensus conference. Ann Oncol. 2010;21 Suppl 5:v232–43. doi: 10.1093/annonc/mdq194.PubMedCrossRefGoogle Scholar
  18. 18.
    Sanger GJ, Andrews PL. Treatment of nausea and vomiting: gaps in our knowledge. Auton Neurosci. 2006;129(1-2):3–16. doi: 10.1016/j.autneu.2006.07.009.PubMedCrossRefGoogle Scholar
  19. 19.
    Warr DG, Hesketh PJ, Gralla RJ, Muss HB, Herrstedt J, Eisenberg PD, et al. Efficacy and tolerability of aprepitant for the prevention of chemotherapy-induced nausea and vomiting in patients with breast cancer after moderately emetogenic chemotherapy. J Clin Oncol. 2005;23(12):2822–30. doi: 10.1200/jco.2005.09.050.PubMedCrossRefGoogle Scholar
  20. 20.
    Andrews PL, Horn CC. Signals for nausea and emesis: Implications for models of upper gastrointestinal diseases. Auton Neurosci. 2006;125(1-2):100–15. doi: 10.1016/j.autneu.2006.01.008.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hornby PJ. Central neurocircuitry associated with emesis. Am J Med. 2001;111 Suppl 8A:106s–12s.Google Scholar
  22. 22.
    Miller AD, Ruggiero DA. Emetic reflex arc revealed by expression of the immediate-early gene c-fos in the cat. J Neurosci. 1994;14(2):871–88.PubMedGoogle Scholar
  23. 23.
    Hall JE. Guyton and Hall textbook of medical physiology. 13 th ed. Elsevier Health Science; 2016.Google Scholar
  24. 24.
    Gershon MD. Review article: roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol Ther. 1999;13 Suppl 2:15–30.PubMedGoogle Scholar
  25. 25.
    Racke K, Reimann A, Schworer H, Kilbinger H. Regulation of 5-HT release from enterochromaffin cells. Behav Brain Res. 1996;73(1-2):83–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Darmani NA, Ray AP. Evidence for a re-evaluation of the neurochemical and anatomical bases of chemotherapy-induced vomiting. Chem Rev. 2009;109(7):3158–99. doi: 10.1021/cr900117p.PubMedCrossRefGoogle Scholar
  27. 27.
    Endo T, Minami M, Hirafuji M, Ogawa T, Akita K, Nemoto M, et al. Neurochemistry and neuropharmacology of emesis – the role of serotonin. Toxicology. 2000;153(1-3):189–201.PubMedCrossRefGoogle Scholar
  28. 28.
    Saito R, Takano Y, Kamiya HO. Roles of substance P and NK(1) receptor in the brainstem in the development of emesis. J Pharmacol Sci. 2003;91(2):87–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Andrews PL, Sanger GJ. Nausea and the quest for the perfect anti-emetic. Eur J Pharmacol. 2014;722:108–21. doi: 10.1016/j.ejphar.2013.09.072.PubMedCrossRefGoogle Scholar
  30. 30.
    Yates BJ, Miller AD, Lucot JB. Physiological basis and pharmacology of motion sickness: an update. Brain Res Bull. 1998;47(5):395–406.PubMedCrossRefGoogle Scholar
  31. 31.
    Ladabaum U, Koshy SS, Woods ML, Hooper FG, Owyang C, Hasler WL. Differential symptomatic and electrogastrographic effects of distal and proximal human gastric distension. Am J Physiol. 1998;275(3 Pt 1):G418–24.PubMedGoogle Scholar
  32. 32.
    Stern RM, Koch KL, Andrews PLR. Nausea: mechanisms and management. New York: Oxford University Press; 2011.Google Scholar
  33. 33.
    Kim MS, Chey WD, Owyang C, Hasler WL. Role of plasma vasopressin as a mediator of nausea and gastric slow wave dysrhythmias in motion sickness. Am J Physiol. 1997;272(4 Pt 1):G853–62.PubMedGoogle Scholar
  34. 34.
    Wang SC, Borison HL. Copper sulphate emesis; a study of afferent pathways from the gastrointestinal tract. Am J Physiol. 1951;164(2):520–6.PubMedGoogle Scholar
  35. 35.
    Andrews PL, Davis CJ, Bingham S, Davidson HI, Hawthorn J, Maskell L. The abdominal visceral innervation and the emetic reflex: pathways, pharmacology, and plasticity. Can J Physiol Pharmacol. 1990;68(2):325–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Andrews PL, Wood KL. Vagally mediated gastric motor and emetic reflexes evoked by stimulation of the antral mucosa in anaesthetized ferrets. J Physiol. 1988;395:1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    De Jonghe BC, Horn CC. Chemotherapy agent cisplatin induces 48-h Fos expression in the brain of a vomiting species, the house musk shrew (Suncus murinus). Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R902–11. doi: 10.1152/ajpregu.90952.2008.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Reynolds DJ, Barber NA, Grahame-Smith DG, Leslie RA. Cisplatin-evoked induction of c-fos protein in the brainstem of the ferret: the effect of cervical vagotomy and the anti-emetic 5-HT3 receptor antagonist granisetron (BRL 43694). Brain Res. 1991;565(2):231–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Borison HL. Area postrema: chemoreceptor circumventricular organ of the medulla oblongata. Prog Neurobiol. 1989;32(5):351–90.PubMedCrossRefGoogle Scholar
  40. 40.
    Babic T, Browning KN. The role of vagal neurocircuits in the regulation of nausea and vomiting. Eur J Pharmacol. 2014;722:38–47. doi: 10.1016/j.ejphar.2013.08.047.PubMedCrossRefGoogle Scholar
  41. 41.
    Travagli RA, Hermann GE, Browning KN, Rogers RC. Brainstem circuits regulating gastric function. Annu Rev Physiol. 2006;68:279–305. doi: 10.1146/annurev.physiol.68.040504.094635.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Browning KN, Kalyuzhny AE, Travagli RA. Opioid peptides inhibit excitatory but not inhibitory synaptic transmission in the rat dorsal motor nucleus of the vagus. J Neurosci. 2002;22(8):2998–3004. doi:20026224. Pub.Google Scholar
  43. 43.
    Browning KN, Kalyuzhny AE, Travagli RA. Mu-opioid receptor trafficking on inhibitory synapses in the rat brainstem. J Neurosci. 2004;24(33):7344–52. doi: 10.1523/jneurosci.1676-04.2004.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Browning KN, Travagli RA. Characterization of the in vitro effects of 5-hydroxytryptamine (5-HT) on identified neurones of the rat dorsal motor nucleus of the vagus (DMV). Br J Pharmacol. 1999;128(6):1307–15. doi: 10.1038/sj.bjp.0702908.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ladic LA, Buchan AM. Association of substance P and its receptor with efferent neurons projecting to the greater curvature of the rat stomach. J Auton Nerv Syst. 1996;58(1-2):25–34.PubMedCrossRefGoogle Scholar
  46. 46.
    Le Brun I, Dufour A, Crest M, Szabo G, Erdelyi F, Baude A. Differential expression of Nk1 and NK3 neurokinin receptors in neurons of the nucleus tractus solitarius and the dorsal vagal motor nucleus of the rat and mouse. Neuroscience. 2008;152(1):56–64. doi: 10.1016/j.neuroscience.2007.12.024.PubMedCrossRefGoogle Scholar
  47. 47.
    Cai QQ, Zheng LF, Fan RF, Lian H, Zhou L, Song HY, et al. Distribution of dopamine receptors D1- and D2-immunoreactive neurons in the dorsal motor nucleus of vagus in rats. Auton Neurosci. 2013;176(1-2):48–53. doi: 10.1016/j.autneu.2013.01.007.PubMedCrossRefGoogle Scholar
  48. 48.
    Zheng Z, Travagli RA. Dopamine effects on identified rat vagal motoneurons. Am J Physiol Gastrointest Liver Physiol. 2007;292(4):G1002–8. doi: 10.1152/ajpgi.00527.2006.PubMedCrossRefGoogle Scholar
  49. 49.
    Lang IM, Sarna SK, Condon RE. Gastrointestinal motor correlates of vomiting in the dog: quantification and characterization as an independent phenomenon. Gastroenterology. 1986;90(1):40–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Lang IM, Sarna SK, Dodds WJ. Pharyngeal, esophageal, and proximal gastric responses associated with vomiting. Am J Physiol. 1993;265(5 Pt 1):G963–72.PubMedGoogle Scholar
  51. 51.
    Miller AD, Nonaka S. Mechanisms of abdominal muscle activation during vomiting. J Appl Physiol. 1990;69(1):21–5.PubMedGoogle Scholar
  52. 52.
    Leslie RA, Reynolds DJ, Andrews PL, Grahame-Smith DG, Davis CJ, Harvey JM. Evidence for presynaptic 5-hydroxytryptamine3 recognition sites on vagal afferent terminals in the brainstem of the ferret. Neuroscience. 1990;38(3):667–73.PubMedCrossRefGoogle Scholar
  53. 53.
    Reynolds DJ, Leslie RA, Grahame-Smith DG, Harvey JM. Localization of 5-HT3 receptor binding sites in human dorsal vagal complex. Eur J Pharmacol. 1989;174(1):127–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Glatzle J, Sternini C, Robin C, Zittel TT, Wong H, Reeve Jr JR, et al. Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology. 2002;123(1):217–26.PubMedCrossRefGoogle Scholar
  55. 55.
    Tonini M. 5-Hydroxytryptamine effects in the gut: the 3, 4, and 7 receptors. Neurogastroenterol Motil. 2005;17(5):637–42. doi: 10.1111/j.1365-2982.2005.00716.x.PubMedCrossRefGoogle Scholar
  56. 56.
    Darmani NA, Wang Y, Abad J, Ray AP, Thrush GR, Ramirez J. Utilization of the least shrew as a rapid and selective screening model for the antiemetic potential and brain penetration of substance P and NK1 receptor antagonists. Brain Res. 2008;1214:58–72. doi: 10.1016/j.brainres.2008.03.077.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ray AP, Chebolu S, Ramirez J, Darmani NA. Ablation of least shrew central neurokinin NK1 receptors reduces GR73632-induced vomiting. Behav Neurosci. 2009;123(3):701–6. doi: 10.1037/a0015733.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hejazi RA, Lavenbarg TH, Pasnoor M, Dimachkie M, Foran P, Herbelin L, et al. Autonomic nerve function in adult patients with cyclic vomiting syndrome. Neurogastroenterol Motil. 2011;23(5):439–43. doi: 10.1111/j.1365-2982.2011.01679.x.PubMedCrossRefGoogle Scholar
  59. 59.
    Hejazi RA, McCallum RW. Review article: cyclic vomiting syndrome in adults—rediscovering and redefining an old entity. Aliment Pharmacol Ther. 2011;34(3):263–73. doi: 10.1111/j.1365-2036.2011.04721.x.PubMedCrossRefGoogle Scholar
  60. 60.
    Schaub N, Ng K, Kuo P, Aziz Q, Sifrim D. Gastric and lower esophageal sphincter pressures during nausea: a study using visual motion-induced nausea and high-resolution manometry. Am J Physiol Gastrointest Liver Physiol. 2014;306(9):G741–7. doi: 10.1152/ajpgi.00412.2013.PubMedCrossRefGoogle Scholar
  61. 61.
    Uchino M, Ishii K, Kuwahara M, Ebukuro S, Tsubone H. Role of the autonomic nervous system in emetic and cardiovascular responses in Suncus murinus. Auton Neurosci. 2002;100(1–2):32–40.PubMedCrossRefGoogle Scholar
  62. 62.
    Abell TL, Malagelada JR, Lucas AR, Brown ML, Camilleri M, Go VL, et al. Gastric electromechanical and neurohormonal function in anorexia nervosa. Gastroenterology. 1987;93(5):958–65.PubMedCrossRefGoogle Scholar
  63. 63.
    Abell TL, Cardoso S, Schwartzbaum J, Familoni B, Wilson R, Massie D. Diabetic gastroparesis is associated with an abnormality in sympathetic innervation. Eur J Gastroenterol Hepatol. 1994;6(3):241–7.CrossRefGoogle Scholar
  64. 64.
    Low PA, Opfer-Gehrking TL, McPhee BR, Fealey RD, Benarroch EE, Willner CL, et al. Prospective evaluation of clinical characteristics of orthostatic hypotension. Mayo Clin Proc. 1995;70(7):617–22. doi: 10.1016/s0025-6196(11)63911-6.PubMedCrossRefGoogle Scholar
  65. 65.
    Robertson D. The epidemic of orthostatic tachycardia and orthostatic intolerance. Am J Med Sci. 1999;317(2):75–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Al-Shekhlee A, Guerch M, Ridha F, McNeeley K, Chelimsky TC. Postural tachycardia syndrome with asystole on head-up tilt. Clin Auton Res. 2008;18(1):36–9. doi: 10.1007/s10286-007-0445-9.CrossRefGoogle Scholar
  67. 67.
    Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I, et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res. 2011;21(2):69–72. doi: 10.1007/s10286-011-0119-5.PubMedCrossRefGoogle Scholar
  68. 68.
    Thieben MJ, Sandroni P, Sletten DM, Benrud-Larson LM, Fealey RD, Vernino S, et al. Postural orthostatic tachycardia syndrome: the Mayo clinic experience. Mayo Clin Proc. 2007;82(3):308–13. doi: 10.4065/82.3.308.PubMedCrossRefGoogle Scholar
  69. 69.
    Chelimsky G, Chelimsky T. Familial association of autonomic and gastrointestinal symptoms. Clin Auton Res. 2001;11(6):383–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Chelimsky G, Hupertz VF, Chelimsky TC. Abdominal pain as the presenting symptom of autonomic dysfunction in a child. Clin Pediatr. 1999;38(12):725–9.CrossRefGoogle Scholar
  71. 71.
    Garland EM, Raj SR, Black BK, Harris PA, Robertson D. The hemodynamic and neurohumoral phenotype of postural tachycardia syndrome. Neurology. 2007;69(8):790–8. doi: 10.1212/01.wnl.0000267663.05398.40.PubMedCrossRefGoogle Scholar
  72. 72.
    Low PA, Opfer-Gehrking TL, Textor SC, Benarroch EE, Shen WK, Schondorf R, et al. Postural tachycardia syndrome (POTS). Neurology. 1995;45(4 Suppl 5):S19–25.PubMedGoogle Scholar
  73. 73.
    Jacob G, Costa F, Shannon JR, Robertson RM, Wathen M, Stein M, et al. The neuropathic postural tachycardia syndrome. N Engl J Med. 2000;343(14):1008–14. doi: 10.1056/nejm200010053431404.PubMedCrossRefGoogle Scholar
  74. 74.
    Benarroch EE. Postural tachycardia syndrome: a heterogeneous and multifactorial disorder. Mayo Clin Proc. 2012;87(12):1214–25. doi: 10.1016/j.mayocp.2012.08.013.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Low PA, Sandroni P, Joyner M, Shen WK. Postural tachycardia syndrome (POTS). J Cardiovasc Electrophysiol. 2009;20(3):352–8. doi: 10.1111/j.1540-8167.2008.01407.x.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Streeten DH. Pathogenesis of hyperadrenergic orthostatic hypotension. Evidence of disordered venous innervation exclusively in the lower limbs. J Clin Invest. 1990;86(5):1582–8. doi: 10.1172/jci114878.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Shannon JR, Flattem NL, Jordan J, Jacob G, Black BK, Biaggioni I, et al. Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N Engl J Med. 2000;342(8):541–9. doi: 10.1056/nejm200002243420803.PubMedCrossRefGoogle Scholar
  78. 78.
    Gazit Y, Nahir AM, Grahame R, Jacob G. Dysautonomia in the joint hypermobility syndrome. Am J Med. 2003;115(1):33–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Rowe PC, Barron DF, Calkins H, Maumenee IH, Tong PY, Geraghty MT. Orthostatic intolerance and chronic fatigue syndrome associated with Ehlers-Danlos syndrome. J Pediatr. 1999;135(4):494–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Shibao C, Arzubiaga C, Roberts 2nd LJ, Raj S, Black B, Harris P, et al. Hyperadrenergic postural tachycardia syndrome in mast cell activation disorders. Hypertension. 2005;45(3):385–90. doi: 10.1161/01.hyp.0000158259.68614.40.PubMedCrossRefGoogle Scholar
  81. 81.
    Garland EM, Celedonio JE, Raj SR. Postural tachycardia syndrome: beyond orthostatic intolerance. Curr Neurol Neurosci Rep. 2015;15(9):60. doi: 10.1007/s11910-015-0583-8.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Da Costa JM. On irritable heart; a clinical study of a form of functional cardiac disorder and its consequences. Am J Med Sci. 1871;121(1):2–52.CrossRefGoogle Scholar
  83. 83.
    Fu Q, Vangundy TB, Galbreath MM, Shibata S, Jain M, Hastings JL, et al. Cardiac origins of the postural orthostatic tachycardia syndrome. J Am Coll Cardiol. 2010;55(25):2858–68. doi: 10.1016/j.jacc.2010.02.043.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Jacob G, Robertson D, Mosqueda-Garcia R, Ertl AC, Robertson RM, Biaggioni I. Hypovolemia in syncope and orthostatic intolerance role of the renin-angiotensin system. Am J Med. 1997;103(2):128–33.PubMedCrossRefGoogle Scholar
  85. 85.
    Abell TL, Adams KA, Boles RG, Bousvaros A, Chong SK, Fleisher DR, et al. Cyclic vomiting syndrome in adults. Neurogastroenterol Motil. 2008;20(4):269–84. doi: 10.1111/j.1365-2982.2008.01113.x.PubMedCrossRefGoogle Scholar
  86. 86.
    Prakash C, Staiano A, Rothbaum RJ, Clouse RE. Similarities in cyclic vomiting syndrome across age groups. Am J Gastroenterol. 2001;96(3):684–8. doi: 10.1111/j.1572-0241.2001.03606.x.PubMedCrossRefGoogle Scholar
  87. 87.
    Tack J, Talley NJ, Camilleri M, Holtmann G, Hu P, Malagelada JR, et al. Functional gastroduodenal disorders. Gastroenterology. 2006;130(5):1466–79. doi: 10.1053/j.gastro.2005.11.059.PubMedCrossRefGoogle Scholar
  88. 88.
    Fitzpatrick E, Bourke B, Drumm B, Rowland M. The incidence of cyclic vomiting syndrome in children: population-based study. Am J Gastroenterol. 2008;103(4):991–5. doi: 10.1111/j.1572-0241.2007.01668.x; quiz 996.PubMedCrossRefGoogle Scholar
  89. 89.
    Pareek N, Fleisher DR, Abell T. Cyclic vomiting syndrome: what a gastroenterologist needs to know. Am J Gastroenterol. 2007;102(12):2832–40. doi: 10.1111/j.1572-0241.2007.01549.x.PubMedCrossRefGoogle Scholar
  90. 90.
    Li BU, Balint JP. Cyclic vomiting syndrome: evolution in our understanding of a brain-gut disorder. Adv Pediatr. 2000;47:117–60.PubMedGoogle Scholar
  91. 91.
    Abu-Arafeh I, Russell G. Cyclical vomiting syndrome in children: a population-based study. J Pediatr Gastroenterol Nutr. 1995;21(4):454–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Fleisher DR, Gornowicz B, Adams K, Burch R, Feldman EJ. Cyclic vomiting syndrome in 41 adults: the illness, the patients, and problems of management. BMC Med. 2005;3:20. doi: 10.1186/1741-7015-3-20.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Galli JA, Sawaya RA, Friedenberg FK. Cannabinoid hyperemesis syndrome. Curr Drug Abuse Rev. 2011;4(4):241–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Sawhney MS, Prakash C, Lustman PJ, Clouse RE. Tricyclic antidepressants for chronic vomiting in diabetic patients. Dig Dis Sci. 2007;52(2):418–24. doi: 10.1007/s10620-006-9378-8.PubMedCrossRefGoogle Scholar
  95. 95.
    Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383–95.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Brown MR, Fisher LA. Corticotropin-releasing factor: effects on the autonomic nervous system and visceral systems. Fed Proc. 1985;44(1 Pt 2):243–8.PubMedGoogle Scholar
  97. 97.
    Contarino A, Dellu F, Koob GF, Smith GW, Lee KF, Vale WW, et al. Dissociation of locomotor activation and suppression of food intake induced by CRF in CRFR1-deficient mice. Endocrinology. 2000;141(7):2698–702. doi: 10.1210/endo.141.7.7653.PubMedCrossRefGoogle Scholar
  98. 98.
    Croiset G, Nijsen MJ, Kamphuis PJ. Role of corticotropin-releasing factor, vasopressin and the autonomic nervous system in learning and memory. Eur J Pharmacol. 2000;405(1-3):225–34.PubMedCrossRefGoogle Scholar
  99. 99.
    Richard D, Lin Q, Timofeeva E. The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. Eur J Pharmacol. 2002;440(2-3):189–97.PubMedCrossRefGoogle Scholar
  100. 100.
    Tache Y, Bonaz B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest. 2007;117(1):33–40. doi: 10.1172/jci30085.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Perrin MH, Vale WW. Corticotropin releasing factor receptors and their ligand family. Ann N Y Acad Sci. 1999;885:312–28.PubMedCrossRefGoogle Scholar
  102. 102.
    Dautzenberg FM, Hauger RL. The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci. 2002;23(2):71–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Dautzenberg FM, Kilpatrick GJ, Hauger RL, Moreau J. Molecular biology of the CRH receptors—in the mood. Peptides. 2001;22(5):753–60.PubMedCrossRefGoogle Scholar
  104. 104.
    Martinez V, Wang L, Rivier J, Grigoriadis D, Tache Y. Central CRF, urocortins and stress increase colonic transit via CRF1 receptors while activation of CRF2 receptors delays gastric transit in mice. J Physiol. 2004;556(Pt 1):221–34. doi: 10.1113/jphysiol.2003.059659.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Tache Y. Cyclic vomiting syndrome: the corticotropin-releasing-factor hypothesis. Dig Dis Sci. 1999;44 Suppl 8:79s–86s.Google Scholar
  106. 106.
    Tache Y, Martinez V, Million M, Wang L. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors. Am J Physiol Gastrointest Liver Physiol. 2001;280(2):G173–7.PubMedGoogle Scholar
  107. 107.
    Barreau F, Ferrier L, Fioramonti J, Bueno L. New insights in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr Res. 2007;62(3):240–5. doi: 10.1203/PDR.0b013e3180db2949.PubMedCrossRefGoogle Scholar
  108. 108.
    Kurnik M, Gil K. Intestinal mucosal mast cells and vagal nerve stimulation. Folia Med Cracov. 2009;50(3-4):55–62.PubMedGoogle Scholar
  109. 109.
    Adelson DW, Kosoyan HP, Wang Y, Steinberg JZ, Tache Y. Gastric vagal efferent inhibition evoked by intravenous CRF is unrelated to simultaneously recorded vagal afferent activity in urethane-anesthetized rats. J Neurophysiol. 2007;97(4):3004–14. doi: 10.1152/jn.01143.2006.PubMedCrossRefGoogle Scholar
  110. 110.
    Chelimsky G, Madan S, Alshekhlee A, Heller E, McNeeley K, Chelimsky T. A comparison of dysautonomias comorbid with cyclic vomiting syndrome and with migraine. Gastroenterol Res Pract. 2009;2009:701019. doi: 10.1155/2009/701019.PubMedCrossRefGoogle Scholar
  111. 111.
    Hejazi RA, Patil H, McCallum RW. Dumping syndrome: establishing criteria for diagnosis and identifying new etiologies. Dig Dis Sci. 2010;55(1):117–23. doi: 10.1007/s10620-009-0939-5.PubMedCrossRefGoogle Scholar
  112. 112.
    Hejazi RA, Lavenbarg TH, McCallum RW. Spectrum of gastric emptying patterns in adult patients with cyclic vomiting syndrome. Neurogastroenterol Motil. 2010;22(12):1298–302. doi: 10.1111/j.1365-2982.2010.01584.x, e1338.PubMedCrossRefGoogle Scholar
  113. 113.
    Namin F, Patel J, Lin Z, Sarosiek I, Foran P, Esmaeili P, et al. Clinical, psychiatric and manometric profile of cyclic vomiting syndrome in adults and response to tricyclic therapy. Neurogastroenterol Motil. 2007;19(3):196–202. doi: 10.1111/j.1365-2982.2006.00867.x.PubMedCrossRefGoogle Scholar
  114. 114.
    To J, Issenman RM, Kamath MV. Evaluation of neurocardiac signals in pediatric patients with cyclic vomiting syndrome through power spectral analysis of heart rate variability. J Pediatr. 1999;135(3):363–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Chelimsky TC, Chelimsky GG. Autonomic abnormalities in cyclic vomiting syndrome. J Pediatr Gastroenterol Nutr. 2007;44(3):326–30. doi: 10.1097/MPG.0b013e31802bddb7.PubMedCrossRefGoogle Scholar
  116. 116.
    Venkatesan T, Prieto T, Barboi A, Li B, Schroeder A, Hogan W, et al. Autonomic nerve function in adults with cyclic vomiting syndrome: a prospective study. Neurogastroenterol Motil. 2010;22(12):1303–7. doi: 10.1111/j.1365-2982.2010.01577.x, e1339.PubMedCrossRefGoogle Scholar
  117. 117.
    Sleisenger MH, Feldman M, Friedman LS, Brandt LJ. Sleisenger and Fordtran’s gastrointestinal and liver disease: pathophysiology, diagnosis, management. 10th ed. Philadelphia, PA: Saunders/Elsevier; 2015.Google Scholar
  118. 118.
    Janssen P, Vanden Berghe P, Verschueren S, Lehmann A, Depoortere I, Tack J. Review article: the role of gastric motility in the control of food intake. Aliment Pharmacol Ther. 2011;33(8):880–94. doi: 10.1111/j.1365-2036.2011.04609.x.PubMedCrossRefGoogle Scholar
  119. 119.
    Janssen P, Verschueren S, Ly HG, Vos R, Van Oudenhove L, Tack J. Intragastric pressure during food intake: a physiological and minimally invasive method to assess gastric accommodation. Neurogastroenterol Motil. 2011;23(4):316–22. doi: 10.1111/j.1365-2982.2011.01676.x, e153–314.PubMedCrossRefGoogle Scholar
  120. 120.
    Takahashi T, Owyang C. Characterization of vagal pathways mediating gastric accommodation reflex in rats. J Physiol. 1997;504(Pt 2):479–88.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Farre R, Tack J. Food and symptom generation in functional gastrointestinal disorders: physiological aspects. Am J Gastroenterol. 2013;108(5):698–706. doi: 10.1038/ajg.2013.24.PubMedCrossRefGoogle Scholar
  122. 122.
    Huizinga JD. Gastrointestinal peristalsis: joint action of enteric nerves, smooth muscle, and interstitial cells of Cajal. Microsc Res Tech. 1999;47(4):239–47. doi: 10.1002/(sici)1097-0029(19991115)47:4<239::aid-jemt3>;2-0.PubMedCrossRefGoogle Scholar
  123. 123.
    Ordog T, Ward SM, Sanders KM. Interstitial cells of cajal generate electrical slow waves in the murine stomach. J Physiol. 1999;518(Pt 1):257–69.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–79.PubMedCrossRefGoogle Scholar
  125. 125.
    Ziegler D, Schadewaldt P, Pour Mirza A, Piolot R, Schommartz B, Reinhardt M, et al. [13C]octanoic acid breath test for non-invasive assessment of gastric emptying in diabetic patients: validation and relationship to gastric symptoms and cardiovascular autonomic function. Diabetologia. 1996;39(7):823–30.PubMedCrossRefGoogle Scholar
  126. 126.
    Hunt RH, Camilleri M, Crowe SE, El-Omar EM, Fox JG, Kuipers EJ, et al. The stomach in health and disease. Gut. 2015;64(10):1650–68. doi: 10.1136/gutjnl-2014-307595.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Camilleri M, Toouli J, Herrera MF, Kulseng B, Kow L, Pantoja JP, et al. Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery. 2008;143(6):723–31. doi: 10.1016/j.surg.2008.03.015.PubMedCrossRefGoogle Scholar
  128. 128.
    Gourcerol G, Tissier F, Melchior C, Touchais JY, Huet E, Prevost G, et al. Impaired fasting pyloric compliance in gastroparesis and the therapeutic response to pyloric dilatation. Aliment Pharmacol Ther. 2015;41(4):360–7. doi: 10.1111/apt.13053.PubMedCrossRefGoogle Scholar
  129. 129.
    Malik Z, Sankineni A, Parkman HP. Assessing pyloric sphincter pathophysiology using EndoFLIP in patients with gastroparesis. Neurogastroenterol Motil. 2015;27(4):524–31. doi: 10.1111/nmo.12522.PubMedCrossRefGoogle Scholar
  130. 130.
    Parkman HP, Hasler WL, Fisher RS. American Gastroenterological Association technical review on the diagnosis and treatment of gastroparesis. Gastroenterology. 2004;127(5):1592–622.PubMedCrossRefGoogle Scholar
  131. 131.
    Soykan I, Sivri B, Sarosiek I, Kiernan B, McCallum RW. Demography, clinical characteristics, psychological and abuse profiles, treatment, and long-term follow-up of patients with gastroparesis. Dig Dis Sci. 1998;43(11):2398–404.PubMedCrossRefGoogle Scholar
  132. 132.
    Hoogerwerf WA, Pasricha PJ, Kalloo AN, Schuster MM. Pain: the overlooked symptom in gastroparesis. Am J Gastroenterol. 1999;94(4):1029–33. doi: 10.1111/j.1572-0241.1999.01008.x.PubMedCrossRefGoogle Scholar
  133. 133.
    Lemann M, Dederding JP, Flourie B, Franchisseur C, Rambaud JC, Jian R. Abnormal perception of visceral pain in response to gastric distension in chronic idiopathic dyspepsia. The irritable stomach syndrome. Dig Dis Sci. 1991;36(9):1249–54.PubMedCrossRefGoogle Scholar
  134. 134.
    Parkman HP, Camilleri M, Farrugia G, McCallum RW, Bharucha AE, Mayer EA, et al. Gastroparesis and functional dyspepsia: excerpts from the AGA/ANMS meeting. Neurogastroenterol Motil. 2010;22(2):113–33. doi: 10.1111/j.1365-2982.2009.01434.x.PubMedCrossRefGoogle Scholar
  135. 135.
    Stanghellini V, Tosetti C, Paternico A, Barbara G, Morselli-Labate AM, Monetti N, et al. Risk indicators of delayed gastric emptying of solids in patients with functional dyspepsia. Gastroenterology. 1996;110(4):1036–42.PubMedCrossRefGoogle Scholar
  136. 136.
    Jung HK, Choung RS, Locke 3rd GR, Schleck CD, Zinsmeister AR, Szarka LA, et al. The incidence, prevalence, and outcomes of patients with gastroparesis in Olmsted County, Minnesota, from 1996 to 2006. Gastroenterology. 2009;136(4):1225–33. doi: 10.1053/j.gastro.2008.12.047.PubMedCrossRefGoogle Scholar
  137. 137.
    Choung RS, Locke 3rd GR, Schleck CD, Zinsmeister AR, Melton 3rd LJ, Talley NJ. Risk of gastroparesis in subjects with type 1 and 2 diabetes in the general population. Am J Gastroenterol. 2012;107(1):82–8. doi: 10.1038/ajg.2011.310.PubMedCrossRefGoogle Scholar
  138. 138.
    Intagliata N, Koch KL. Gastroparesis in type 2 diabetes mellitus: prevalence, etiology, diagnosis, and treatment. Curr Gastroenterol Rep. 2007;9(4):270–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Horowitz M, O’Donovan D, Jones KL, Feinle C, Rayner CK, Samsom M. Gastric emptying in diabetes: clinical significance and treatment. Diabet Med. 2002;19(3):177–94.Google Scholar
  140. 140.
    Koch KL, Calles-Escandon J. Diabetic gastroparesis. Gastroenterol Clin North Am. 2015;44(1):39–57. doi: 10.1016/j.gtc.2014.11.005.PubMedCrossRefGoogle Scholar
  141. 141.
    Camilleri M, Bharucha AE, Farrugia G. Epidemiology, mechanisms, and management of diabetic gastroparesis. Clin Gastroenterol Hepatol. 2011;9(1):5–12; quiz e17. doi: 10.1016/j.cgh.2010.09.022.
  142. 142.
    Choi KM, Zhu J, Stoltz GJ, Vernino S, Camilleri M, Szurszewski JH, et al. Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol. 2007;293(5):G1039–45. doi: 10.1152/ajpgi.00317.2007.PubMedCrossRefGoogle Scholar
  143. 143.
    Samsom M, Roelofs JM, Akkermans LM, van Berge Henegouwen GP, Smout AJ. Proximal gastric motor activity in response to a liquid meal in type I diabetes mellitus with autonomic neuropathy. Dig Dis Sci. 1998;43(3):491–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Undeland KA, Hausken T, Aanderud S, Berstad A. Lower postprandial gastric volume response in diabetic patients with vagal neuropathy. Neurogastroenterol Motil. 1997;9(1):19–24.PubMedCrossRefGoogle Scholar
  145. 145.
    Guy RJ, Dawson JL, Garrett JR, Laws JW, Thomas PK, Sharma AK, et al. Diabetic gastroparesis from autonomic neuropathy: surgical considerations and changes in vagus nerve morphology. J Neurol Neurosurg Psychiatry. 1984;47(7):686–91.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Smith B. Neuropathology of the oesophagus in diabetes mellitus. J Neurol Neurosurg Psychiatry. 1974;37(10):1151–4.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Carroll SL, Byer SJ, Dorsey DA, Watson MA, Schmidt RE. Ganglion-specific patterns of diabetes-modulated gene expression are established in prevertebral and paravertebral sympathetic ganglia prior to the development of neuroaxonal dystrophy. J Neuropathol Exp Neurol. 2004;63(11):1144–54.PubMedCrossRefGoogle Scholar
  148. 148.
    Guo C, Quobatari A, Shangguan Y, Hong S, Wiley JW. Diabetic autonomic neuropathy: evidence for apoptosis in situ in the rat. Neurogastroenterol Motil. 2004;16(3):335–45. doi: 10.1111/j.1365-2982.2004.00524.x.PubMedCrossRefGoogle Scholar
  149. 149.
    Tay SS, Wong WC. Short- and long-term effects of streptozotocin-induced diabetes on the dorsal motor nucleus of the vagus nerve in the rat. Acta Anat. 1994;150(4):274–81.PubMedCrossRefGoogle Scholar
  150. 150.
    Grover M, Farrugia G, Lurken MS, Bernard CE, Faussone-Pellegrini MS, Smyrk TC, et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology. 2011;140(5):1575–85.e1578. doi: 10.1053/j.gastro.2011.01.046.
  151. 151.
    O’Grady G, Angeli TR, Du P, Lahr C, Lammers WJ, Windsor JA, et al. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology. 2012;143(3):589–98.e581–583. doi: 10.1053/j.gastro.2012.05.036.
  152. 152.
    Gibbons SJ, Verhulst PJ, Bharucha A, Farrugia G. Review article: carbon monoxide in gastrointestinal physiology and its potential in therapeutics. Aliment Pharmacol Ther. 2013;38(7):689–702. doi: 10.1111/apt.12467.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Regalia J, Cai F, Helke C. Streptozotocin-induced diabetes and the neurochemistry of vagal afferent neurons. Brain Res. 2002;938(1-2):7–14.PubMedCrossRefGoogle Scholar
  154. 154.
    Kennedy WR, Navarro X, Sutherland DE. Neuropathy profile of diabetic patients in a pancreas transplantation program. Neurology. 1995;45(4):773–80.PubMedCrossRefGoogle Scholar
  155. 155.
    Ziegler D, Gries FA, Spuler M, Lessmann F. The epidemiology of diabetic neuropathy. Diabetic Cardiovascular Autonomic Neuropathy Multicenter Study Group. J Diabetes Complications. 1992;6(1):49–57.PubMedCrossRefGoogle Scholar
  156. 156.
    O’Brien IA, McFadden JP, Corrall RJ. The influence of autonomic neuropathy on mortality in insulin-dependent diabetes. Q J Med. 1991;79(290):495–502.Google Scholar
  157. 157.
    Ewing DJ, Campbell IW, Clarke BF. The natural history of diabetic autonomic neuropathy. Q J Med. 1980;49(193):95–108.Google Scholar
  158. 158.
    Kahn R. Proceedings of a consensus development conference on standardized measures in diabetic neuropathy. Autonomic nervous system testing. Diabetes Care. 1992;15(8):1095–103.PubMedCrossRefGoogle Scholar
  159. 159.
    Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Swenne CA, et al. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study Atherosclerosis Risk In Communities. Circulation. 2000;102(11):1239–44.PubMedCrossRefGoogle Scholar
  160. 160.
    McCraty R, Shaffer F. Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med. 2015;4(1):46–61. doi: 10.7453/gahmj.2014.073.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Low PA, Tomalia VA, Park KJ. Autonomic function tests: some clinical applications. J Clin Neurol. 2013;9(1):1–8. doi: 10.3988/jcn.2013.9.1.1.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Illigens BM, Gibbons CH. Sweat testing to evaluate autonomic function. Clin Auton Res. 2009;19(2):79–87. doi: 10.1007/s10286-008-0506-8.PubMedCrossRefGoogle Scholar
  163. 163.
    Freeman R. Assessment of cardiovascular autonomic function. Clin Neurophysiol. 2006;117(4):716–30. doi: 10.1016/j.clinph.2005.09.027.PubMedCrossRefGoogle Scholar
  164. 164.
    Mathias CJ, editor. Investigation of autonomic disorders in autonomic failure: a textbook of clinical disorders of the autonomic nervous system. 5th ed. Oxford: Oxford, UP; 2013.Google Scholar
  165. 165.
    Ewing DJ, Campbell IW, Burt AA, Clarke BF. Vascular reflexes in diabetic autonomic neuropathy. Lancet (London, England). 1973;2(7842):1354–6.Google Scholar
  166. 166.
    Low PA, Singer W. Management of neurogenic orthostatic hypotension: an update. Lancet Neurol. 2008;7(5):451–8. doi: 10.1016/s1474-4422(08)70088-7.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Aslam N, Kedar A, Nagarajarao HS, Reddy K, Rashed H, Cutts T, et al. Serum catecholamines and dysautonomia in diabetic gastroparesis and liver cirrhosis. Am J Med Sci. 2015;350(2):81–6. doi: 10.1097/maj.0000000000000523.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Aminoff MJ. Neurology and general medicine. 4th ed. Philadelphia: Churchill Livingstone; 2008.Google Scholar
  169. 169.
    Ewing DJ, Campbell IW, Clarke BF. Assessment of cardiovascular effects in diabetic autonomic neuropathy and prognostic implications. Ann Intern Med. 1980;92(2_Part_2):308–11. doi: 10.7326/0003-4819-92-2-308.
  170. 170.
    Lewis JE, Lantigua L, Atlas SE, Lopez J, Mendez A, Goldberg S, et al. A cross-sectional assessment to detect type 2 diabetes with endothelial and autonomic nervous system markers using a novel system. J Diabetes Metab Disord. 2014;13(1):1–8. doi: 10.1186/s40200-014-0118-x.CrossRefGoogle Scholar
  171. 171.
    Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities. J Diabetes Sci Technol. 2008;2(4):645–57.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Al-Shekhlee A, Lindenberg JR, Hachwi RN, Chelimsky TC. The value of autonomic testing in postural tachycardia syndrome. Clin Auton Res. 2005;15(3):219–22. doi: 10.1007/s10286-005-0282-7.PubMedCrossRefGoogle Scholar
  173. 173.
    Agarwal AK, Garg R, Ritch A, Sarkar P. Postural orthostatic tachycardia syndrome. Postgrad Med J. 2007;83(981):478–80. doi: 10.1136/pgmj.2006.055046.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Stocker A, Abell TL, Rashed H, Kedar A, Boatright B, Chen J. Autonomic evaluation of patients with gastroparesis and neurostimulation: comparisons of direct/systemic and indirect/cardiac measures. Gastroenterol Res. 2016;9:10–16.Google Scholar
  175. 175.
    Oubre B, Al-Juburi A, Rashed HM, Abell TL. Evaluation of autonomic and enteric nervous system may affect the outcome of therapy in patients with GI motility disorders. Gastroenterology. 2003;124(4):A507. doi: 10.1016/S0016-5085(03)82567-2.CrossRefGoogle Scholar
  176. 176.
    Daboul I, Taleb N, Rashed HM, Alkheshen MM, Abell TL. Evaluation of autonomic and enteric measures can affect clinical care of patients with GI motility disorders. Gastroenterology. 2000;118(4):A1082. doi: 10.1016/S0016-5085(00)80126-2.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Division of Gastroenterology, Hepatology, and NutritionUniversity of Louisville School of MedicineLouisvilleUSA

Personalised recommendations