Skip to main content

Helium Magnetometers

  • Chapter
  • First Online:

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 19))

Abstract

Optically pumped helium (4He, 3He) magnetometers have provided magnetic field data for military, space exploration and geophysical laboratory applications for over five decades. More recently they are increasingly being used for experiments in basic research. The characteristics of He magnetometers that have made them instruments of choice for these varied applications include high sensitivity, high accuracy, simplicity of the resonance line, small heading errors due to light shifts, temperature independence of resonance cells, linear relationship between the magnetic field and the resonance frequency, excellent stability for gradiometer operation and robustness for field and space use . All He magnetometers manufactured from 1960 to 1990 utilized an RF electrodeless discharge He-4 lamp as an optical pumping source of 1083 nm resonance radiation. With the invent of optical fiber lasers at 1083 nm from the 1990s on, laser-pumped He magnetometers are characterized by sensitivities up to two orders of magnitude better than lamp-pumped He magnetometers and are more accurate, smaller, and very stable for use in magnetic gradiometers. A quantum step forward in terms of precision was achieved by utilizing the benefits of free spin precession. For polarized helium-3 the coherent spin precession time T* 2 can reach up to 100 h at low magnetic fields and even at high magnetic fields (> 0.1 T) nuclear spin precession times of ~5 min have been reported. This opens a new chapter of ultra-high precision magnetometry where the signal readout is accomplished by using SQUIDs, optical pumped alkalimagnetometers or NMR techniques. The following article provides a comprehensive overview on helium magnetometry starting from some historical remarks to the latest developments including future perspectives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. F. Bitter, Phys. Rev. 76, 833 (1949)

    Article  Google Scholar 

  2. A. Kastler, J. Phys. Radium 11, 255 (1950)

    Article  Google Scholar 

  3. A. Kastler, J. Opt. Soc. Am. 47, 460 (1957)

    Article  Google Scholar 

  4. H.G. Demelt, PR 105, 1924 (1957)

    Article  Google Scholar 

  5. W.E. Bell, A.L. Bloom, PR 107, 1559 (1957)

    Article  Google Scholar 

  6. E.B. Alexandrov, A.K. Vershovskii, Mx and Mz magnetometers (chapter 4, 60–84), in Optical Magnetometry, eds. D. Budker, D.F. Jackson Kimball (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  7. D.F. Jackson Kimball, S. Pustelny, V.V. Yashchuk, D. Budker, Optical magnetometry with modulated light (chapter 6, 104–125), in Optical Magnetometry, eds. D. Budker, D.F. Jackson Kimball (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  8. J. Brossel, A. Kastler, Compt. Rend. Acad. Sci. 229, 1213 (1949)

    Google Scholar 

  9. F.D. Colegrove, P.A. Franken, Phys. Rev. 119, 680 (1960)

    Article  Google Scholar 

  10. A.R. Keyser, J.A. Rice, L.D. Schearer, J. Geophys. Res. 66, 4163 (1961)

    Article  Google Scholar 

  11. B. Chéron, H. Gilles, J. Hamel, O. Moreau, E. Noël, Opt. Commun. 115, 71 (1995)

    Article  Google Scholar 

  12. H. Gilles, J. Hamel, B. Chéron, Rev. Sci. Instrum. 72, 2253 (2001)

    Article  Google Scholar 

  13. R.E. Slocum, E.J. Smith, Contrib. Geophys. Geodesy 31, 99 (2001)

    Google Scholar 

  14. R.E. Slocum, G. Kuhlman, L. Ryan, D. King, in OCEANS’02 MTS/IEEE, eds. by H.W. Anderson, T.W. Donaldson, Vol. 2, (IEEE Press, Biloxi, MS, 2002), p. 945

    Google Scholar 

  15. R.E. Slocum, D.D. McGregor, Measurement of the geomagnetic field using parametric resonance in optically pumped He4. IEEE Trans. Mag., MAG 10, 532–535 (1974)

    Google Scholar 

  16. G.K. Walters, F.D. Colegrove, L.D. Schearer, Phys. Rev. Lett. 8, 439 (1962)

    Article  Google Scholar 

  17. F.D. Colegrove, L.D. Schearer, G.K. Walters, Phys. Rev. 132, 2561 (1963)

    Article  Google Scholar 

  18. L.D. Schearer, F.D. Colegrove, G.K. Walters, Rev. Sci. Instr. 34, 1363 (1963)

    Article  Google Scholar 

  19. L.D. Schearer, Phys. Rev. 127, 512 (1962)

    Article  Google Scholar 

  20. P.J. Mohr, B.N. Taylor, D.B. Newell. Codata recommended values of the fundamental physical constants (2014)

    Google Scholar 

  21. D.D. McGregor, Rev. Sci. Instr. 58, 1067 (1987)

    Article  Google Scholar 

  22. J.L. Flowers, B.W. Petley, M.G. Richards, Metrologia 30, 75 (1993)

    Article  Google Scholar 

  23. C. Cohen-Tannoudji, J. DuPont-Roc, S. Haroche, F. Laloë, Phys. Rev. Lett. 22, 758 (1969)

    Article  Google Scholar 

  24. J. Dupont-Roc, S. Haroche, C. Cohen-Tannoudji, Phys. Lett. 28A, 638 (1969)

    Article  Google Scholar 

  25. R.E. Slocum, B.I. Marton, IEEE Trans. Magn. 10, 528 (1974)

    Google Scholar 

  26. N. Bloembergen, R.V. Pound, Phys. Rev. 95, 8 (1954)

    Article  Google Scholar 

  27. O. Moreau, B. Charon, H. Gilles, J. Hamel, E. Noël, J. Phys. III France 7, 99 (1997)

    Article  Google Scholar 

  28. P.J. Nacher, M. Leduc, J. de Physique 46, 2057–2073 (1985)

    Article  Google Scholar 

  29. R. Mueller, Physica B 297, 277–281 (2001)

    Article  Google Scholar 

  30. T. Gentile, M. Hayden, M. Barlow, J. Opt. Soc. Am. B 20, 2068–2074 (2003)

    Article  Google Scholar 

  31. G. Tastevin, S. Grot, E. Courtade, S. Bordais, P.J. Nacher, Appl. Phys. B: Lasers Optics 78, 145–156 (2004)

    Article  Google Scholar 

  32. P.J. Nacher, E. Courtade, M. Abboud, A. Sinatra, G. Tastevin, T. Dohnalik, Acta Phys. Pol., B 33, 2225–2236 (2002)

    Google Scholar 

  33. A. Nikiel-Osuchowska, G. Collier, B. Głowacz, T. Pałasz, Z. Olejniczak, W.P. Węglarz, G. Tastevin, P.J. Nacher, T. Dohnalik, Eur. Phys. J. D 67, 200 (2013)

    Article  Google Scholar 

  34. E. Courtade, F. Marion, P.J. Nacher, G. Tastevin, K. Kiersnowski, T. Dohnalik, Eur. Phys. J. D 21, 25–55 (2002)

    Article  Google Scholar 

  35. L.D. Schearer, Phys. Rev. 160, 76–80 (1967)

    Article  Google Scholar 

  36. D. Vrinceanu, S. Kotochigova, H.R. Sadeghpour, Phys. Rev. A 69, 022714 (2004)

    Article  Google Scholar 

  37. T.R. Gentile, R.D. McKeown, Phys. Rev. A 47, 456 (1993)

    Article  Google Scholar 

  38. F.D. Colegrove, L.D. Schearer, G.K. Walters, Phys. Rev. 135, A353 (1964)

    Article  Google Scholar 

  39. W.A. Fitzsimmons, N.F. Lane, G.K. Walters, Phys. Rev. 174, 193 (1968)

    Article  Google Scholar 

  40. R. Barbé, F. Laloë, J. Brossel, Phys. Rev. Lett. 34, 1488 (1975)

    Article  Google Scholar 

  41. M. Himbert, V. Lefevre-Seguin, P.J. Nacher, J. Dupont-Roc, M. Leduc, F. Laloë, J. Phys. Lett. 44, 523 (1983)

    Article  Google Scholar 

  42. C. Gemmel, W. Heil, S. Karpuk, K. Lenz, C. Ludwig, Y. Sobolev, K. Tullney, M. Burghoff, W. Kilian, S. Knappe-Grüneberg, W. Müller, A. Schnabel, F. Seifert, L. Trahms, S. Baeßler, Eur. Phys. J. D 57, 303–320 (2010)

    Google Scholar 

  43. H.-C. Koch, G. Bison, Z.D. Grujić, W. Heil, M. Kasprzak, P. Knowles, A. Kraft, A. Pazgalev, A. Schnabel, J. Voigt, A. Weis, arXiv: 1502.06366v1 (2015)

    Google Scholar 

  44. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961), pp. 82–83

    Google Scholar 

  45. D.I. Hoult, R.E. Richards, J. Magn. Reson. 24, 71–85 (1976)

    Google Scholar 

  46. A. Nikiel, P. Blümler, W. Heil, M. Hehn, S. Karpuk, A. Maul, E. Otten, L.M. Schreiber, M. Terekhov, Eur. Phys. J. D 68, 330 (2014)

    Article  Google Scholar 

  47. G.D. Cates, S.R. Schaefer, W. Happer, Phys. Rev. A 37, 2877 (1988)

    Article  Google Scholar 

  48. D.D. McGregor, Phys. Rev. A 41, 2631 (1990)

    Article  Google Scholar 

  49. R. Barbé, M. Leduc, F. Laloë, J. Phys. France 35, 935 (1974)

    Article  Google Scholar 

  50. D.R. Rich, T.R. Gentile, T.B. Smith, A.K. Thompson, G.L. Jones, Appl. Phys. Lett. 80, 2210 (2002)

    Article  Google Scholar 

  51. J. Schmiedeskamp, W. Heil, E.W. Otten, R.K. Kremer, A. Simon, J. Zimmer, Part I., Eur. Phys. J. D 38, 427–438 (2006)

    Google Scholar 

  52. A. Deninger, W. Heil, E.W. Otten, M. Wolf, R.K. Kremer, A. Simon, Part II, Eur. Phys. J. D 38, 439–443 (2006)

    Google Scholar 

  53. J. Schmiedeskamp, H.-J. Elmers, W. Heil, E.W. Otten, Y. Sobolev, W. Kilian, H. Rinneberg, T. Sander-Thömmes, F. Seifert, J. Zimmer, Part III., Eur. Phys. J. D 38, 445–454 (2006)

    Google Scholar 

  54. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall PTR, Upper Saddle River, 1993)

    Google Scholar 

  55. J.A. Barnes et al., IEEE Trans. Instrum. Meas. 20, 105 (1971)

    Article  Google Scholar 

  56. F. Bloch, A. Siegert, Phys. Rev. 57, 522 (1940)

    Article  Google Scholar 

  57. N.F. Ramsey, Phys. Rev. 100, 1191 (1955)

    Article  Google Scholar 

  58. J. Clarke, W.M. Goubau, M.B. Ketchen, J. Low Temp. Phys. 25, 99 (1976)

    Article  Google Scholar 

  59. D. Drung, Supercond. Sci. Technol. 16, 1320–1336 (2003)

    Article  Google Scholar 

  60. M. Burghoff, H. Schleyerbach, D. Drung, L. Trahms, H. Koch, IEEE Trans. Appl. Superconductivity 9, 4069–4072 (1999)

    Google Scholar 

  61. M. Guéron, Magn. Reson. Med. 19, 31 (1991)

    Article  Google Scholar 

  62. M. Pfeffer, O. Lutz, J. Magn. Res. A 108, 106 (2005)

    Article  Google Scholar 

  63. International Council for Science: Committee on Data for Science and Technology (CODATA). www.codata.org. (2007)

  64. F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, K. Tullney, PRL 112, 110801 (2014)

    Google Scholar 

  65. L.F. Fuks, F.S.C. Huang, C.M. Carter, W.A. Edelstein, B.P. Roemer, J. Magn. Reson. 100, 229 (1992)

    Google Scholar 

  66. C. Barmet, N. de Zanche, B.J. Wilm, K.P. Pruessmann, Magn. Reson. Med. 62, 269 (2009)

    Google Scholar 

  67. G.W. Bennett et al., Phys. Rev. D 73, 072003 (2006)

    Article  Google Scholar 

  68. R. Kc, Y.N. Gowda, D. Djukovic, I.D. Henry, G.H.J. Park, D. Raftery, J. Magn. Reson. 205, 63 (2010)

    Article  Google Scholar 

  69. A. Kraft, H-Ch. Koch, M. Daum, W. Heil, Th Lauer, D. Neumann, A. Pazgalev, Yu. Sobolev, A. Weis, EPJ Tech. Instrum. 1, 8 (2014)

    Article  Google Scholar 

  70. http://supernovae.in2p3.fr/users/jacdz/csin2p3–20131024/report_CSIN2P3_n2EDM.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Heil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heil, W. (2017). Helium Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics