Skip to main content

Conditions That Can Promote Alzheimer’s

  • Chapter
  • First Online:

Abstract

The pathogenic link between vascular risk factors and cognitive loss was first suspected from circumstantial animal research that tied insufficient blood supply to the brain with cognitive deterioration. Animal data prompted several large, population-based, prospective studies, including the Kungsholmen, Cache, Rotterdam, and Caerphilly studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Safouris A, Psaltopoulou T, Sergentanis TN, Boutati E, Kapaki E, Tsivgoulis G. Vascular risk factors and Alzheimer’s disease pathogenesis: are conventional pharmacological approaches protective for cognitive decline progression? CNS Neurol Disord Drug Targets. 2015;14(2):257–69.

    Article  CAS  PubMed  Google Scholar 

  2. de la Torre JC. Hemodynamic consequences of deformed microvessels in the brain in Alzheimer’s disease. Ann NY Acad Sci 1997;826:75–91

    Google Scholar 

  3. Lee SJ, Ritchie CS, Yaffe K, Stijacic Cenzer I, Barnes DE. A clinical index to predict progression from mild cognitive impairment to dementia due to Alzheimer’s disease. PLoS ONE. 2014;9(12):e113535.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thomas T, Miners S, Love S. Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer’s disease and vascular dementia. Brain. 2015;138(Pt 4):1059–69.

    Article  PubMed  Google Scholar 

  5. Xekardaki A, Rodriguez C, Montandon ML, Toma S, Tombeur E, Herrmann FR, Zekry D, Lovblad KO, Barkhof BF, Giannakopoulos P, Haller S. Arterial spin labeling may contribute to the prediction of cognitive deterioration in healthy elderly individuals. Radiology. 2014;2–14(274):490–99.

    Google Scholar 

  6. Alsop DC, Dai W, Grossman M, Detre JA. Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer’s disease. J Alzheimers Dis. 2010;20(3):871–80.

    PubMed  PubMed Central  Google Scholar 

  7. Qiu C. Preventing Alzheimer’s disease by targeting vascular risk factors: hope and gap. J Alzheimers Dis. 2012;2012(32):721–31.

    Google Scholar 

  8. Bangen KJ, Nation DA, Delano-Wood L, Weissberger GH, Hansen LA, Galasko DR, Salmon DP, Bondi MW. Aggregate effects of vascular risk factors on cerebrovascular changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement. 2015;11(4):394–403.

    Article  PubMed  Google Scholar 

  9. Bangen KJ, Nation DA, Clark LR, Harmell AL, Wierenga CE, Dev SI, Delano-Wood L, Zlatar ZZ, Salmon DP, Liu TT, Bondi MW. Interactive effects of vascular risk burden and advanced age on cerebral blood flow. Front Aging Neurosci. 2014;6:159–60.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Clerici F, Caracciolo B, Cova I, Fusari Imperatori S, Maggiore L, Galimberti D, Scarpini E, Mariani C, Fratiglioni L. Does vascular burden contribute to the progression of mild cognitive impairment to dementia? Dement Geriatr Cogn Disord. 2012;34:235–43.

    Article  PubMed  Google Scholar 

  11. Mielke MM, Rosenberg PB, Tschanz J, Cook L, Corcoran C, Hayden KM, Norton M, Rabins PV, Green RC, Welsh-Bohmer KA, Breitner JC, Munger R, Lyketsos CG. Vascular factors predict rate of progression in Alzheimer disease. Neurology. 2007;69:1850–8.

    Article  CAS  PubMed  Google Scholar 

  12. Richard E, Moll van Charante EP, van Gool WA. Vascular risk factors as treatment target to prevent cognitive decline. J Alzheimers Dis. 2012;32:733–40.

    PubMed  Google Scholar 

  13. Breteler MM. Vascular risk factors for Alzheimer’s disease: an epidemiologic perspective. Neurobiol Aging. 2000;21(2):153–60.

    Google Scholar 

  14. de la Torre JC, Mussivand T. Can disturbed brain microcirculation cause Alzheimer’ disease? Neurol Res. 1993;15:146–53.

    PubMed  Google Scholar 

  15. de la Torre JC. Critically attained threshold of cerebral hypoperfusion: the CATCH hypothesis of Alzheimer’s pathogenesis. Neurobiol Aging. 2000;21(2):331–42.

    Google Scholar 

  16. Chételat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60(8):1374–7.

    Article  PubMed  Google Scholar 

  17. Leary MC. Incidence of silent stroke in the US. stroke. Cerebrovasc Dis. 2003;16:280–5.

    Article  PubMed  Google Scholar 

  18. Omalu B. Chronic traumatic encephalopathy. Prog Neurol Surg. 2014;28:38–49.

    Article  PubMed  Google Scholar 

  19. Bouma GJ, Muizelaar JP. Cerebral blood flow in severe clinical head injury. New Horiz. 1995;3(3):384–94.

    CAS  PubMed  Google Scholar 

  20. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, Santini VE, Lee HS, Kubilus CA, Stern RA. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68(7):709–35.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ, Gorno-Tempini ML, Schuff N. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology. 2005;234:851–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xu W, Yu JT, Tan MS, Tan L. Cognitive reserve and Alzheimer’s disease. Mol Neurobiol. 2015;51(1):187–208.

    Article  CAS  PubMed  Google Scholar 

  23. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11(11):1006–12.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ott A, Breteler MM, van Harskamp F, Claus JJ, van der Cammen TJ, Grobbee DE, Hofman A. Prevalence of Alzheimer’s disease and vascular dementia: association with education. The Rotterdam study. BMJ. 1995;310:970–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de la Torre JC. Cerebral perfusion enhancing interventions: a new strategy for the prevention of Alzheimer dementia. Brain Pathol, In press 2016.

    Google Scholar 

  26. Aaslid R. Visually evoked dynamic blood flow response of the human cerebral circulation. Stroke. 1987;18:771–5.

    Article  CAS  PubMed  Google Scholar 

  27. Roland PE, Friberg L. Localization of cortical areas activated by thinking. J Neurophysiol. 1985;53(5):1219–43.

    CAS  PubMed  Google Scholar 

  28. Wilson RS, Segawa E, Boyle PA, Bennett DA. Influence of late-life cognitive activity on cognitive health. Neurology. 2012;78(15):1123–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mazoyer B, Houdé O, Joliot M, Mellet E, Tzourio-Mazoyer N. Regional cerebral blood flow increases during wakeful rest following cognitive training. Brain Res Bull. 2009;80(3):133–8.

    Article  PubMed  Google Scholar 

  30. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14:125–30.

    Article  PubMed  Google Scholar 

  31. Kessler H, Taubner S, Buchheim A, Münte TF, Stasch M, Kächele H, Roth G, Heinecke A, Erhard P, Cierpka M, Wiswede D. Individualized and clinically derived stimuli activate limbic structures in depression: an fMRI study. PLoS ONE. 2011;6(1):e15712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bench CJ, Frackowiak RS, Dolan RJ. Changes in regional cerebral blood flow on recovery from depression. Psychol Med. 1995;25(2):247–61.

    Article  CAS  PubMed  Google Scholar 

  33. Cermakova P, Eriksdotter M, Lund LH, Winblad B, Religa P, Religa D. Heart failure and Alzheimer’s disease. J Intern Med. 2015;277(4):406–25.

    Article  CAS  PubMed  Google Scholar 

  34. Roher AE, Tyas SL, Maarouf CL, Daugs ID, Kokjohn TA, Emmerling MR, Garami Z, Belohlavek M, Sabbagh MN, Sue LI, Beach TG. Intracranial atherosclerosis as a contributing factor to Alzheimer’s disease dementia. Alzheimers Dement. 2011;7(4):436–44.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rafnsson SB, Deary IJ, Fowkes FG. Peripheral arterial disease and cognitive function. Vasc Med. 2009;14(1):51–61.

    Article  PubMed  Google Scholar 

  36. Johnson W, Price JF, Rafnsson SB, Deary IJ, Fowkes FG. Ankle–brachial index predicts level of, but not change in, cognitive function: the Edinburgh Artery Study at the 15-year follow-up. Vasc Med. 2010;15(2):91–7.

    Article  PubMed  Google Scholar 

  37. Ito H, Kanno I, Fukuda H. Human cerebral circulation: positron emission tomography studies. Ann Nucl Med. 2005;19(2):65–74.

    Article  PubMed  Google Scholar 

  38. Rabkin SW. Arterial stiffness: detection and consequences in cognitive impairment and dementia of the elderly. J Alzheimers Dis. 2012;32(3):541–9.

    PubMed  Google Scholar 

  39. LaRocca TJ, Hearon CM Jr, Henson GD, Seals DR. Mitochondrial quality control and age-associated arterial stiffening. Exp Gerontol. 2014;14(58C):78–82.

    Article  Google Scholar 

  40. Anonymous. Cardiogenic dementia. Lancet;1977:309(8001):27–8.

    Google Scholar 

  41. de Toledo Ferraz Alves TC, Ferreira LK, Wajngarten M, Busatto GF. Cardiac disorders as risk factors for Alzheimer’s disease. J Alzheimers Dis. 2010;20(3):749–63.

    Google Scholar 

  42. Zuccala G, Onder G, Marzetti E. Use of angiotensinconverting enzyme inhibitors and variations in cognitive performance among patients with heart failure. Eur Heart J. 2005;26:226–33.

    Article  CAS  PubMed  Google Scholar 

  43. Corder EH, Ervin JF, Lockhart E, Szymanski MH, Schmechel DE, Hulette CM. Cardiovascular damage in Alzheimer disease: autopsy findings from the Bryan ADRC. J Biomed Biotechnol. 2005;2005(2):189–97.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Boudoulas KD, Sparks EA, Rittgers SE, Wooley CF, Boudoulas H. Factors determining left atrial kinetic energy in patients with chronic mitral valve disease. Herz. 2003;28(5):437–44.

    Article  PubMed  Google Scholar 

  45. Thacker EL, McKnight B, Psaty BM, Longstreth WT Jr, Sitlani CM, Dublin S, Arnold AM, Fitzpatrick AL, Gottesman RF, Heckbert SR. Atrial fibrillation and cognitive decline: a longitudinal cohort study. Neurology. 2013;81(2):119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kähönen-Väre M, Brunni-Hakala S, Lindroos M, Pitkala K, Strandberg T, Tilvis R. Left ventricular hypertrophy and blood pressure as predictors of cognitive decline in old age. Aging Clin Exp Res. 2004;16(2):147–52.

    Article  PubMed  Google Scholar 

  47. Clarke RJ. Homocysteine-lowering trials for prevention of cardiovascular events: a review of the design and power of the large randomized trials. Am Heart J. 2006;151:282–7.

    Article  Google Scholar 

  48. Harris E, Macpherson H, Pipingas A. Improved blood biomarkers but no cognitive effects from 16 weeks of multivitamin supplementation in healthy older adults. Nutrients. 2015;7(5):3796–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969;56:111–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hofman A, Ott A, Breteler MM, Bots ML, Slooter AJ, van Harskamp F, van Duijn CN, Van Broeckhoven C, Grobbee DE. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet. 1997;349(9046):151–4.

    Article  CAS  PubMed  Google Scholar 

  51. Lai WK, Kan MY. Homocysteine-induced endothelial dysfunction. Ann Nutr Metab. 2015;67(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  52. Hoth KF, Poppas A, Moser DJ, Paul RH, Cohen RA. Cardiac dysfunction and cognition in older adults with heart failure. Cogn Behav Neurol. 2008;21(2):65–72.

    Article  PubMed  Google Scholar 

  53. Waldstein SR, Giggey PP, Thayer JF, Zonderman AB. Nonlinear relations of blood pressure to cognitive function: the Baltimore longitudinal study of aging. Hypertension. 2005;45:374–9.

    Article  CAS  PubMed  Google Scholar 

  54. Forette F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S, Bossini A, Fagard R, Gil-Extremera B, Laks T, Kobalava Z, Sarti C, Tuomilehto J, Vanhanen H, Webster J, Yodfat Y, Birkenhäger WH. Systolic hypertension in Europe investigators. The prevention of dementia with antihypertensive treatment: new evidence from the systolic hypertension in Europe (Syst-Eur) study. Arch Intern Med. 2002;162:2046–52.

    Article  PubMed  Google Scholar 

  55. Bosch J, Yusuf S, Pogue J. HOPE investigators. Heart outcomes prevention evaluation. Use of ramipril in preventing stroke: double blind randomised trial. BMJ. 2002;324:699–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tzourio C, Anderson C, Chapman N. PROGRESS collaborative group. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med. 2003;163:1069–75.

    Article  CAS  PubMed  Google Scholar 

  57. Skoog I, Lithell H, Hansson L. SCOPE study group. Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes: study on cognition and prognosis in the elderly (SCOPE). Am J Hypertens. 2005;18:1052–9.

    Article  CAS  PubMed  Google Scholar 

  58. Pak T, Cadet P, Mantione KJ, Stefano GB. Morphine via nitric oxide modulates beta-amyloid metabolism: a novel protective mechanism for Alzheimer’s disease. Med Sci Monit. 2005;11(10):BR357–66.

    Google Scholar 

  59. Channon KM, Qian H, George SE. Nitric oxide synthase in atherosclerosis and vascular injury: insights from experimental gene therapy. Arterioscler Thromb Vasc Biol. 2000;20(8):1873–81.

    Article  CAS  PubMed  Google Scholar 

  60. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F. Centers for disease control and prevention; American Heart Association. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107(3):499–511.

    Article  PubMed  Google Scholar 

  61. Galleano M, Pechanova O, Fraga CG. Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr Pharm Biotechnol. 2010;11(8):837–48.

    Article  CAS  PubMed  Google Scholar 

  62. Breteler MMB, Claus JJ, Grobbee DE, Hofman A. Cardiovascular disease and distribution of cognitive function in elderly people: the Rotterdam Study. BMJ. 1994;308:1604–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cuadrado-Tejedor M, Hervias I, Ricobaraza A, Puerta E, Pérez-Roldán JM, García-Barroso C, Franco R, Aguirre N, García-Osta A. Sildenafil restores cognitive function without affecting β-amyloid burden in a mouse model of Alzheimer’s disease. Br J Pharmacol. 2011;164(8):2029–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes–systematic overview of prospective observational studies. Diabetologia. 2005;48(12):2460–9.

    Article  CAS  PubMed  Google Scholar 

  65. Davies RS, Vohra RK, Bradbury AW, Adam DJ. The impact of hormone replacement therapy on the pathophysiology of peripheral arterial disease. Eur J Vasc Endovasc Surg. 2007;34(5):569–75.

    Article  CAS  PubMed  Google Scholar 

  66. Hagger-Johnson G, Sabia S, Brunner EJ, Shipley M, Bobak M, Marmot M, Kivimaki M, Singh-Manoux A. Combined impact of smoking and heavy alcohol use on cognitive decline in early old age: Whitehall II prospective cohort study. Br J Psychiatry. 2013;203(2):120–5.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ford AB, Mefrouche Z, Friedland RP, Debanne SM. Smoking and cognitive impairment: a population-based study. J Am Geriatr Soc. 1996;44(8):905–9.

    Article  CAS  PubMed  Google Scholar 

  68. Sabia S, Elbaz A, Dugravot A, Head J, Shipley M, Hagger-Johnson G, Kivimaki M, Singh-Manoux A. Impact of smoking on cognitive decline in early old age: the Whitehall II cohort study. Arch Gen Psychiatry. 2012;69(6):627–35.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Polidori MC, Schulz RJ. Nutritional contributions to dementia prevention: main issues on antioxidant micronutrients. Genes Nutr. 2014;9(2):382.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kesse-Guyot E, Andreeva VA, Jeandel C, Ferry M, Hercberg S, Galan P. A healthy dietary pattern at midlife is associated with subsequent cognitive performance. J Nutr. 2012;142(5):909–15.

    Article  CAS  PubMed  Google Scholar 

  71. Ngandu T, Lehtisalo J, Levälahti E, Laatikainen T, Lindström J, Peltonen M, Solomon A, Ahtiluoto S, Antikainen R, Hänninen T, Jula A, Mangialasche F, Paajanen T, Pajala S, Rauramaa R, Strandberg T, Tuomilehto J, Soininen H, Kivipelto M. Recruitment and baseline characteristics of participants in the finnish geriatric intervention study to prevent cognitive impairment and disability (FINGER)-a randomized controlled lifestyle trial. Int J Environ Res Public Health. 2014;11(9):9345–60.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Poggesi A, Salvadori E, Valenti R, Nannucci S, Ciolli L, Pescini F, Pasi M, Fierini F, Donnini I, Marini S, Chiti G, Rinnoci V, Inzitari D, Pantoni L. The florence VAS-COG clinic: a model for the care of patients with cognitive and behavioral disturbances consequent to cerebrovascular diseases. J Alzheimers Dis. 2014;42(Suppl 4):S453–61.

    PubMed  Google Scholar 

  73. van Buchem MA, Biessels GJ, Brunner la Rocca HP, de Craen TJM, van der Flier WM, Ikram MA, Kappelle J, Koudstaal PJ, Mooijaart SP, Niessen W, van Oostenbrugge R, de Roos A, van Rossum B, Daemen MJAP. The heart-brain connection: a multidisciplinary approach targeting a missing link in the pathophysiology of vascular cognitive impairment. J Alzheimers Dis 2014;42(Suppl 4):S443-51.

    Google Scholar 

  74. Zea-Sevilla MA, Fernández-Blázquez MA, Calero M, Bermejo-Velasco P, Rábano A. Combined Alzheimer’s disease and cerebrovascular staging explains advanced dementia cognition. Alzheimers Dement. 2015 (in press).

    Google Scholar 

  75. Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol Commun. 2014;18(2):135.

    Google Scholar 

  76. Robakis NK. Are Abeta and its derivatives causative agents or innocent bystanders in AD? Neurodegener Dis. 2010;7(1–3):32–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Giannakopoulos P, Herrmann FR, Bussiére T, Bouras C, Kövari E, Perl DP, Morrison JH, Gold G, Hof PR. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology. 2003;60:1495–500.

    Google Scholar 

  78. Doody RS, Farlow M, Aisen PS; Alzheimer’s disease cooperative study data analysis and Publication Committee. Phase 3 trials of solanezumab and bapineuzumab for Alzheimer’s disease N Engl J Med. 2014 10;370(15):1460.

    Google Scholar 

  79. D’Andrea MR. Bursting neurons and fading memories. Academic Press; 2015, pp. 27–32.

    Google Scholar 

  80. Liu E, Schmidt ME, Margolin R, Sperling R, Koeppe R, Mason NS, Klunk WE, Mathis CA, Salloway S, Fox NC, Hill DL, Les AS, Collins P, Gregg KM, Di J, Lu Y, Tudor IC, Wyman BT, Booth K, Broome S, Yuen E, Grundman M, Brashear HR. Amyloid-β 11C-PiB-PET imaging results from 2 randomized bapineuzumab phase 3 AD trials. Bapineuzumab 301 and 302 clinical trial investigators. Neurology. 2015;85(8):692–700.

    Google Scholar 

  81. Kuhn TS. The structure of scientific revolutions. 3rd ed. Chicago, Illinois: The University of Chicago Press; 1996.

    Book  Google Scholar 

  82. Birks JS, Grimley Evans J. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev. 2015;4:CD00119.

    Google Scholar 

  83. Parnetti L, Chiasserini D, Andreasson U, et al. Changes in CSF acetyl- and butyrylcholinesterase activity after long-term treatment with AChE inhibitors in Alzheimer’s disease. Acta Neurol Scand. 2011;124:122–9.

    Article  CAS  PubMed  Google Scholar 

  84. de la Torre JC. Alzheimer’s disease is incurable but preventable. J Alzheimers Dis. 2010;20(3):861–70.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack C. de la Torre .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de la Torre, J.C. (2016). Conditions That Can Promote Alzheimer’s. In: Alzheimer’s Turning Point. Springer, Cham. https://doi.org/10.1007/978-3-319-34057-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34057-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34056-2

  • Online ISBN: 978-3-319-34057-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics