Skip to main content

Multimodal Association of tDCS with Electroencephalography

  • Chapter
  • First Online:
Transcranial Direct Current Stimulation in Neuropsychiatric Disorders

Abstract

In the last decade, in the field of neuromodulation, we have observed an increase in the popularity of approaches that combine transcranial electrical stimulation (tES) with additional methods to establish, in vivo, the neurophysiological consequences of a given experimental or therapeutic manipulation. We are at the beginning of the development of multimodal approaches, and several methods are available that can be combined with tES to study brain functions. This chapter aims to introduce the reader to some basic principles of this multimodal approach. We begin with a brief definition of multimodal association and a description of the advantages of such an approach. Afterwards, we provide a more specific description of how we can combine tES with electroencephalography (EEG). We show that EEG is a feasible and reliable way to track electrophysiological changes induced by tES, deepening our understanding of the mechanisms of action of this tool and revealing the key role of several stimulation features. In neuropsychiatric diseases, a combined tES-EEG approach may allow the prediction of clinical responses to tES, the discrimination of responders from non-responders, improvement in the efficacy of tES, and the tracking of tES-induced neuroplastic changes associated with recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127(2):1031–48.

    Article  CAS  PubMed  Google Scholar 

  2. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5:175–95.

    Article  PubMed  Google Scholar 

  3. Paulus W. Transcranial electrical stimulation (tES—tDCS; tRNS, tACS) methods. Neuropsychol Rehabil. 2011;21:602–17.

    Article  PubMed  Google Scholar 

  4. He B, Liu Z. Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG. IEEE Rev Biomed Eng. 2008;1:23–40.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hunter MA, Coffman BA, Trumbo MC, Clark VP. Tracking the neuroplastic changes associated with transcranial direct current stimulation: a push for multimodal imaging. Front Hum Neurosci. 2013;7:495.

    PubMed  PubMed Central  Google Scholar 

  6. Antal A, Bikson M, Datta A, Lafon B, Dechent P, Parra LC, et al. Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. Neuroimage. 2012;85(Pt 3):1040–7.

    PubMed  Google Scholar 

  7. Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9:2257–60.

    Article  CAS  PubMed  Google Scholar 

  8. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125:2238–47.

    Article  PubMed  Google Scholar 

  10. Medeiros LF, de Souza IC, Vidor LP, de Souza A, Deitos A, Volz MS, et al. Neurobiological effects of transcranial direct current stimulation: a review. Front Psychiatry. 2012;3:110.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553:293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rugg MD, Coles MGH. Electrophysiology of mind: event-related brain potentials and cognition. New York: Oxford University Press; 1995.

    Google Scholar 

  13. Bortoletto M, Veniero D, Thut G, Miniussi C. The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome. Neurosci Biobehav Rev. 2015;49:114–24.

    Article  PubMed  Google Scholar 

  14. Luft CD, Pereda E, Banissy MJ, Bhattacharya J. Best of both worlds: promise of combining brain stimulation and brain connectome. Front Syst Neurosci. 2014;8:132.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol. 2006;117:1623–9.

    Article  PubMed  Google Scholar 

  16. Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. Neuroimage. 2007;35:1113–24.

    Article  PubMed  Google Scholar 

  17. Polania R, Nitsche MA, Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp. 2011;32:1236–49.

    Article  PubMed  Google Scholar 

  18. Miniussi C, Brignani D, Pellicciari MC. Combining transcranial electrical stimulation with electroencephalography: a multimodal approach. Clin EEG Neurosci. 2012;43:184–91.

    Article  PubMed  Google Scholar 

  19. Accornero N, Li Voti P, La Riccia M, Gregori B. Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res. 2007;178:261–6.

    Article  PubMed  Google Scholar 

  20. Accornero N, Capozza M, Pieroni L, Pro S, Davi L, Mecarelli O. EEG mean frequency changes in healthy subjects during prefrontal transcranial direct current stimulation. J Neurophysiol. 2014;112:1367–75.

    Article  PubMed  Google Scholar 

  21. Cunillera T, Brignani D, Cucurell D, Fuentemilla L, Miniussi C. The right inferior frontal cortex in response inhibition: a tDCS-ERP co-registration study. Neuroimage. 2016. doi:10.1016/j.neuroimage.2015.11.044.

    Google Scholar 

  22. Mangia AL, Pirini M, Cappello A. Transcranial direct current stimulation and power spectral parameters: a tDCS/EEG co-registration study. Front Hum Neurosci. 2014;8:601.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Romero Lauro LJ, Rosanova M, Mattavelli G, Convento S, Pisoni A, Opitz A, et al. TDCS increases cortical excitability: direct evidence from TMS-EEG. Cortex. 2014;58:99–111.

    Article  PubMed  Google Scholar 

  24. Roy A, Baxter B, He B. High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: a simultaneous tDCS-EEG study. IEEE Trans Biomed Eng. 2014;61:1967–78.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Soekadar SR, Witkowski M, Cossio EG, Birbaumer N, Cohen LG. Learned EEG-based brain self-regulation of motor-related oscillations during application of transcranial electric brain stimulation: feasibility and limitations. Front Behav Neurosci. 2014;8:93.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Song M, Shin Y, Yun K. Beta-frequency EEG activity increased during transcranial direct current stimulation. Neuroreport. 2014;25:1433–6.

    Article  PubMed  Google Scholar 

  27. Faria P, Leal A, Miranda PC. Comparing different electrode configurations using the 10-10 international system in tDCS: a finite element model analysis. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:1596–9.

    PubMed  Google Scholar 

  28. Faria P, Fregni F, Sebastiao F, Dias AI, Leal A. Feasibility of focal transcranial DC polarization with simultaneous EEG recording: preliminary assessment in healthy subjects and human epilepsy. Epilepsy Behav. 2012;25:417–25.

    Article  PubMed  Google Scholar 

  29. Schestatsky P, Simis M, Freeman R, Pascual-Leone A, Fregni F. Non-invasive brain stimulation and the autonomic nervous system. Clin Neurophysiol. 2013;124:1716–28.

    Article  PubMed  Google Scholar 

  30. Miller J, Berger B, Sauseng P. Anodal transcranial direct current stimulation (tDCS) increases frontal-midline theta activity in the human EEG: a preliminary investigation of non-invasive stimulation. Neurosci Lett. 2015;588:114–9.

    Article  CAS  PubMed  Google Scholar 

  31. Van Doren J, Langguth B, Schecklmann M. Electroencephalographic effects of transcranial random noise stimulation in the auditory cortex. Brain Stimul. 2014;7:807–12.

    Article  PubMed  Google Scholar 

  32. Ambrus GG, Antal A, Paulus W. Comparing cutaneous perception induced by electrical stimulation using rectangular and round shaped electrodes. Clin Neurophysiol. 2011;122:803–7.

    Article  PubMed  Google Scholar 

  33. Sehm B, Hoff M, Gundlach C, Taubert M, Conde V, Villringer A, et al. A novel ring electrode setup for the recording of somatosensory evoked potentials during transcranial direct current stimulation (tDCS). J Neurosci Methods. 2013;212:234–6.

    Article  PubMed  Google Scholar 

  34. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2:201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tallgren P, Vanhatalo S, Kaila K, Voipio J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol. 2005;116:799–806.

    Article  CAS  PubMed  Google Scholar 

  36. Fertonani A, Ferrari C, Miniussi C. What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin Neurophysiol. 2015;126:2181–8.

    Article  PubMed  Google Scholar 

  37. Veniero D, Bortoletto M, Miniussi C. TMS-EEG co-registration: on TMS-induced artifact. Clin Neurophysiol. 2009;120:1392–9.

    Article  PubMed  Google Scholar 

  38. Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85(Pt 3):895–908.

    Article  PubMed  Google Scholar 

  39. Helfrich RF, Knepper H, Nolte G, Struber D, Rach S, Herrmann CS, et al. Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol. 2014;12:e1002031.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cecere R, Rees G, Romei V. Individual differences in alpha frequency drive crossmodal illusory perception. Curr Biol. 2014;25:231–5.

    Article  PubMed  CAS  Google Scholar 

  41. Herrmann CS, Struber D, Helfrich RF, Engel AK. EEG oscillations: from correlation to causality. Int J Psychophysiol. 2015. doi:10.1016/j.ijpsycho.2015.02.003.

    Google Scholar 

  42. Neuling T, Wagner S, Wolters CH, Zaehle T, Herrmann CS. Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front Psychiatry. 2012;3:83.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Neuling T, Ruhnau P, Fusca M, Demarchi G, Herrmann CS, Weisz N. Friends, not foes: magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation. Neuroimage. 2015;118:406–13.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Polania R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012;22:1314–8.

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt S, Mante A, Ronnefarth M, Fleischmann R, Gall C, Brandt SA. Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: a two-week repeated session alternating current stimulation study. Brain Stimul. 2013;6:87–93.

    Article  PubMed  Google Scholar 

  46. Schroeder MJ, Barr RE. Quantitative analysis of the electroencephalogram during cranial electrotherapy stimulation. Clin Neurophysiol. 2001;112:2075–83.

    Article  CAS  PubMed  Google Scholar 

  47. Voss U, Holzmann R, Hobson A, Paulus W, Koppehele-Gossel J, Klimke A, et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci. 2014;17:810–2.

    Article  CAS  PubMed  Google Scholar 

  48. Eggert T, Dorn H, Sauter C, Nitsche MA, Bajbouj M, Danker-Hopfe H. No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects. Brain Stimul. 2013;6:938–45.

    Article  PubMed  Google Scholar 

  49. Kirov R, Weiss C, Siebner HR, Born J, Marshall L. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc Natl Acad Sci U S A. 2009;106:15460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3.

    Article  CAS  PubMed  Google Scholar 

  51. Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172:369–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5:436–52.

    Article  CAS  PubMed  Google Scholar 

  53. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17:37–53.

    Article  PubMed  Google Scholar 

  54. Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591:1987–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moliadze V, Atalay D, Antal A, Paulus W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul. 2012;5:505–11.

    Article  PubMed  Google Scholar 

  56. Pirulli C, Fertonani A, Miniussi C. Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level? Front Behav Neurosci. 2014;8:226.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Krause B, Cohen Kadosh R. Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front Syst Neurosci. 2014;8:25.

    PubMed  PubMed Central  Google Scholar 

  58. Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci. 2015;9:181.

    PubMed  PubMed Central  Google Scholar 

  59. Wiethoff S, Hamada M, Rothwell JC. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014;7:468–75.

    Article  PubMed  Google Scholar 

  60. Bortoletto M, Pellicciari MC, Rodella C, Miniussi C. The interaction with task-induced activity is more important than polarization: a tDCS study. Brain Stimul. 2015;8:269–76.

    Article  PubMed  Google Scholar 

  61. Furuya S, Klaus M, Nitsche MA, Paulus W, Altenmuller E. Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. J Neurosci. 2014;34:13834–9.

    Article  CAS  PubMed  Google Scholar 

  62. Gill J, Shah-Basak PP, Hamilton R. It’s the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimul. 2015;8:253–9.

    Article  PubMed  Google Scholar 

  63. Impey D, Knott V. Effect of transcranial direct current stimulation (tDCS) on MMN-indexed auditory discrimination: a pilot study. J Neural Transm (Vienna). 2015;122:1175–85.

    Article  Google Scholar 

  64. Reinhart RM, Woodman GF. The surprising temporal specificity of direct-current stimulation. Trends Neurosci. 2015;38:459–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci. 2013;16:838–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013;37:1702–12.

    Article  PubMed  Google Scholar 

  67. Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci. 2004;45:702–7.

    Article  PubMed  Google Scholar 

  68. Thut G, Miniussi C. New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn Sci. 2009;13:182–9.

    Article  PubMed  Google Scholar 

  69. Miniussi C, Thut G. Combining TMS and EEG offers new prospects in cognitive neuroscience. Brain Topogr. 2010;22:249–56.

    Article  PubMed  Google Scholar 

  70. Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol. 2005;568:653–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Moliadze V, Andreas S, Lyzhko E, Schmanke T, Gurashvili T, Freitag CM, et al. Ten minutes of 1mA transcranial direct current stimulation was well tolerated by children and adolescents: self-reports and resting state EEG analysis. Brain Res Bull. 2015;119:25–33.

    Article  PubMed  Google Scholar 

  72. Pellicciari MC, Brignani D, Miniussi C. Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach. Neuroimage. 2013;83:569–80.

    Article  PubMed  Google Scholar 

  73. Spitoni GF, Cimmino RL, Bozzacchi C, Pizzamiglio L, Di Russo F. Modulation of spontaneous alpha brain rhythms using low-intensity transcranial direct-current stimulation. Front Hum Neurosci. 2013;7:529.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tadini L, El-Nazer R, Brunoni AR, Williams J, Carvas M, Boggio P, et al. Cognitive, mood, and electroencephalographic effects of noninvasive cortical stimulation with weak electrical currents. J ECT. 2011;27:134–40.

    Article  PubMed  Google Scholar 

  75. Strigaro G, Mayer I, Chen JC, Cantello R, Rothwell JC. Transcranial direct current stimulation effects on single and paired flash visual evoked potentials. Clin EEG Neurosci. 2014;46:208–13.

    Article  PubMed  Google Scholar 

  76. Zaehle T, Beretta M, Jancke L, Herrmann CS, Sandmann P. Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence. Exp Brain Res. 2011;215:135–40.

    Article  PubMed  Google Scholar 

  77. Antal A, Brepohl N, Poreisz C, Boros K, Csifcsak G, Paulus W. Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception. Clin J Pain. 2008;24:56–63.

    Article  PubMed  Google Scholar 

  78. Csifcsak G, Antal A, Hillers F, Levold M, Bachmann CG, Happe S, et al. Modulatory effects of transcranial direct current stimulation on laser-evoked potentials. Pain Med. 2009;10:122–32.

    Article  PubMed  Google Scholar 

  79. Dieckhofer A, Waberski TD, Nitsche M, Paulus W, Buchner H, Gobbele R. Transcranial direct current stimulation applied over the somatosensory cortex—differential effect on low and high frequency SEPs. Clin Neurophysiol. 2006;117:2221–7.

    Article  PubMed  Google Scholar 

  80. Matsunaga K, Nitsche MA, Tsuji S, Rothwell JC. Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol. 2004;115:456–60.

    Article  PubMed  Google Scholar 

  81. Jacobson L, Ezra A, Berger U, Lavidor M. Modulating oscillatory brain activity correlates of behavioral inhibition using transcranial direct current stimulation. Clin Neurophysiol. 2012;123:979–84.

    Article  PubMed  Google Scholar 

  82. Hoy KE, Emonson MR, Arnold SL, Thomson RH, Daskalakis ZJ, Fitzgerald PB. Testing the limits: investigating the effect of tDCS dose on working memory enhancement in healthy controls. Neuropsychologia. 2013;51:1777–84.

    Article  PubMed  Google Scholar 

  83. Keeser D, Padberg F, Reisinger E, Pogarell O, Kirsch V, Palm U, et al. Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study. Neuroimage. 2011;55:644–57.

    Article  CAS  PubMed  Google Scholar 

  84. Tseng P, Hsu TY, Chang CF, Tzeng OJ, Hung DL, Muggleton NG, et al. Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. J Neurosci. 2012;32:10554–61.

    Article  CAS  PubMed  Google Scholar 

  85. Zaehle T, Sandmann P, Thorne JD, Jancke L, Herrmann CS. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci. 2011;12:2.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Matsumoto J, Fujiwara T, Takahashi O, Liu M, Kimura A, Ushiba J. Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation. J Neuroeng Rehabil. 2010;7:27.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Notturno F, Marzetti L, Pizzella V, Uncini A, Zappasodi F. Local and remote effects of transcranial direct current stimulation on the electrical activity of the motor cortical network. Hum Brain Mapp. 2014;35:2220–32.

    Article  PubMed  Google Scholar 

  88. Wirth M, Rahman RA, Kuenecke J, Koenig T, Horn H, Sommer W, et al. Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production. Neuropsychologia. 2011;49:3989–98.

    Article  PubMed  Google Scholar 

  89. Wu D, Wang J, Yuan Y. Effects of transcranial direct current stimulation on naming and cortical excitability in stroke patients with aphasia. Neurosci Lett. 2015;589:115–20.

    Article  CAS  PubMed  Google Scholar 

  90. Francis JT, Gluckman BJ, Schiff SJ. Sensitivity of neurons to weak electric fields. J Neurosci. 2003;23:7255–61.

    CAS  PubMed  Google Scholar 

  91. Kutchko KM, Frohlich F. Emergence of metastable state dynamics in interconnected cortical networks with propagation delays. PLoS Comput Biol. 2013;9:e1003304.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ho KA, Bai S, Martin D, Alonzo A, Dokos S, Puras P, et al. A pilot study of alternative transcranial direct current stimulation electrode montages for the treatment of major depression. J Affect Disord. 2014;167:251–8.

    Article  PubMed  Google Scholar 

  93. Loo CK, Martin DM. Could transcranial direct current stimulation have unexpected additional benefits in the treatment of depressed patients? Expert Rev Neurother. 2012;12:751–3.

    Article  CAS  PubMed  Google Scholar 

  94. Makeig S, Jung TP. Changes in alertness are a principal component of variance in the EEG spectrum. Neuroreport. 1995;7:213–6.

    Article  CAS  PubMed  Google Scholar 

  95. Gruzelier J. A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. Cogn Process. 2009;10 Suppl 1:S101–9.

    Article  PubMed  Google Scholar 

  96. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999;29:169–95.

    Article  CAS  PubMed  Google Scholar 

  97. Benwell CS, Learmonth G, Miniussi C, Harvey M, Thut G. Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: evidence from biparietal tDCS influence on lateralized attention bias. Cortex. 2015;69:152–65.

    Article  PubMed  Google Scholar 

  98. Learmonth G, Thut G, Benwell CS, Harvey M. The implications of state-dependent tDCS effects in aging: behavioural response is determined by baseline performance. Neuropsychologia. 2015;74:108–19.

    Article  PubMed  Google Scholar 

  99. Sarkar A, Dowker A, Cohen Kadosh R. Cognitive enhancement or cognitive cost: trait-specific outcomes of brain stimulation in the case of mathematics anxiety. J Neurosci. 2014;34:16605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bolognini N, Pascual-Leone A, Fregni F. Using non-invasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil. 2009;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bolognini N, Convento S, Banco E, Mattioli F, Tesio L, Vallar G. Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex. Brain. 2015;138:428–39.

    Article  PubMed  Google Scholar 

  102. Brunoni AR, Ferrucci R, Fregni F, Boggio PS, Priori A. Transcranial direct current stimulation for the treatment of major depressive disorder: a summary of preclinical, clinical and translational findings. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39:9–16.

    Article  PubMed  Google Scholar 

  103. Fregni F, Nitsche MA, Loo CK, Brunoni AR, Marangolo P, Leite J, et al. Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff. 2015;32:22–35.

    Article  PubMed  Google Scholar 

  104. Kuo MF, Paulus W, Nitsche MA. Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage. 2014;85:948–60.

    Article  PubMed  Google Scholar 

  105. Okun M, Lampl I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci. 2008;11(5):535–7.

    Google Scholar 

  106. Krause B, Márquez-Ruiz J, Cohen Kadosh R. The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci. 2013;7:602.

    Google Scholar 

  107. Roizenblatt S, Fregni F, Gimenez R, Wetzel T, Rigonatti SP, Tufik S, et al. Site-specific effects of transcranial direct current stimulation on sleep and pain in fibromyalgia: a randomized, sham-controlled study. Pain Pract. 2007;7:297–306.

    Article  PubMed  Google Scholar 

  108. Vanneste S, Focquaert F, Van de Heyning P, De Ridder D. Different resting state brain activity and functional connectivity in patients who respond and not respond to bifrontal tDCS for tinnitus suppression. Exp Brain Res. 2011;210:217–27.

    Article  PubMed  Google Scholar 

  109. Micoulaud-Franchi JA, Vion-Dury J. One step more toward new therapeutic options in brain stimulation: two models of EEG-based rTMS—from “EEG-contingent rTMS” to “EEG-biofeedback rTMS”. Brain Stimul. 2011;4:122–3.

    Article  PubMed  Google Scholar 

  110. Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7:1032–43.

    Article  PubMed  Google Scholar 

  111. Kasashima Y, Fujiwara T, Matsushika Y, Tsuji T, Hase K, Ushiyama J, et al. Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation (tDCS) in patients with chronic hemiparetic stroke. Exp Brain Res. 2012;221:263–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Miniussi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolognini, N., Miniussi, C. (2016). Multimodal Association of tDCS with Electroencephalography. In: Brunoni, A., Nitsche, M., Loo, C. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-33967-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33967-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33965-8

  • Online ISBN: 978-3-319-33967-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics