Skip to main content

The New Modalities of Transcranial Electric Stimulation: tACS, tRNS, and Other Approaches

  • Chapter
  • First Online:
Book cover Transcranial Direct Current Stimulation in Neuropsychiatric Disorders

Abstract

The most frequently used low-intensity transcranial electrical stimulation (tES) techniques are transcranial direct current (tDCS), alternating current (tACS), and random noise stimulation (tRNS). During tES, currents are applied with intensities ranging between 0.4 and 2 mA through the human scalp. It has been suggested that tACS interacts with cortical oscillations in a frequency-specific manner at single and using tRNS, at multiple frequencies. All techniques might affect homeostatic mechanisms or the signal-to-noise ratio in the brain. The aim of this review is to summarize basic aspects of tACS and tRNS, their possible neuronal mechanisms and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fröhlich F. Experiments and models of cortical oscillations as a target for noninvasive brain stimulation. Prog Brain Res. 2015;222:41–73. doi:10.1016/bs.pbr.2015.07.025.

    Article  PubMed  Google Scholar 

  2. Fröhlich F, Sellers KK, Cordle AL. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation. Expert Rev Neurother. 2015;15(2):145–67. doi:10.1586/14737175.2015.992782.

    Article  PubMed  Google Scholar 

  3. Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1(2):97–105. doi:10.1016/j.brs.2007.10.001.

    Article  PubMed  Google Scholar 

  4. Kar K, Krekelberg B. Transcranial alternating current stimulation attenuates visual motion adaptation. J Neurosci. 2014;34(21):7334–40. doi:10.1523/JNEUROSCI.5248-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mehta AR, Brittain J-S, Brown P. The selective influence of rhythmic cortical versus cerebellar transcranial stimulation on human physiological tremor. J Neurosci. 2014;34(22):7501–8. doi:10.1523/JNEUROSCI.0510-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moliadze V, Atalay D, Antal A, Paulus W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul. 2012;5(4):505–11. doi:10.1016/j.brs.2011.11.004.

    Article  PubMed  Google Scholar 

  7. Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014;24(3):333–9. doi:10.1016/j.cub.2013.12.041.

    Article  CAS  PubMed  Google Scholar 

  8. Jaušovec N, Jaušovec K. Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biol Psychol. 2014;96:42–7. doi:10.1016/j.biopsycho.2013.11.006.

    Article  PubMed  Google Scholar 

  9. Reato D, Rahman A, Bikson M, Parra L. Effects of weak transcranial alternating current stimulation on brain activity—a review of known mechanisms from animal studies. Human Neurosci. 2013;7(October):1–8. doi:10.3389/fnhum.2013.00687.

    Google Scholar 

  10. Brittain J-S, Probert-Smith P, Aziz T, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol. 2013;23(5):436–40. doi:10.1016/j.cub.2013.01.068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan CY, Hounsgaard J, Nicholson C. Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol. 1988;402:751–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Francis JT, Gluckman BJ, Schiff SJ. Sensitivity of neurons to weak electric fields. J Neurosci. 2003;23(19):7255–61.

    CAS  PubMed  Google Scholar 

  13. Deans JK, Powell AD, Jefferys JGR. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol. 2007;583(2):555–65. doi:10.1113/jphysiol.2007.137711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Radman T, Su Y, An JH, Parra LC, Bikson M. Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci. 2007;27(11):3030–6. doi:10.1523/JNEUROSCI.0095-07.2007.

    Article  CAS  PubMed  Google Scholar 

  15. Ozen S, Sirota A, Belluscio M, Anastassiou C, Stark E, Koch C. Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci. 2010;30(34):11476–85. doi:10.1523/JNEUROSCI.5252-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reato D, Rahman A, Bikson M, Parra L. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci. 2010;30(45):15067–79. doi:10.1523/JNEUROSCI.2059-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frohlich F, McCormick D. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67:129–43. doi:10.1016/j.neuron.2010.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holdefer RN, Sadleir R, Russell MJ. Predicted current densities in the brain during transcranial electrical stimulation. Clin Neurophysiol. 2006;117(6):1388–97. doi:10.1016/j.clinph.2006.02.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akhtari M, Bryant HC, Emin D, Merrifield W, Mamelak N, Sutherling WW, et al. A model for frequency dependence of conductivities of the live human skull. Brain Topogr. 2003;16(1):39–55.

    Article  CAS  PubMed  Google Scholar 

  20. Neuling T, Rach S, Herrmann C. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Hum Neurosci. 2013;7(April):161. doi:10.3389/fnhum.2013.00161.

    PubMed  PubMed Central  Google Scholar 

  21. Voss U, Holzmann R, Hobson A, Paulus W, Koppehele-Gossel J, Klimke A, et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci. 2014;17(6):810–2. doi:10.1038/nn.3719.

    Article  CAS  PubMed  Google Scholar 

  22. Canolty R, Edwards E, Dalal S, Soltani M, Nagarajan S, Kirsch H, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Sci Rep. 2006;313(September):1626–8. doi:10.1126/science.1128115.

    CAS  Google Scholar 

  23. Jensen O, Colgin L. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11(7):267–9. doi:10.1016/j.tics.2007.05.003.

    Article  PubMed  Google Scholar 

  24. Cabral-Calderin Y, Schmidt-Samoa C, Wilke M. Rhythmic gamma stimulation affects bistable perception. J Cogn Neurosci. 2015;27(7):1298–307. doi:10.1162/jocn_a_00781.

    Article  PubMed  Google Scholar 

  25. Helfrich RF, Knepper H, Nolte G, Strüber D, Rach S, Herrmann CS, et al. Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol. 2014;12(12), e1002031. doi:10.1371/journal.pbio.1002031.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Strüber D, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topogr. 2014;27(1):158–71. doi:10.1007/s10548-013-0294-x.

    Article  PubMed  Google Scholar 

  27. Neuling T, Rach S, Wagner S, Wolters CH, Herrmann CS. Good vibrations: oscillatory phase shapes perception. Neuroimage. 2012;63(2):771–8. doi:10.1016/j.neuroimage.2012.07.024.

    Article  CAS  PubMed  Google Scholar 

  28. Polania R, Nitsche M, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012;22(14):1314–8. doi:10.1016/j.cub.2012.05.021.

    Article  CAS  PubMed  Google Scholar 

  29. Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28(52):14147–55. doi:10.1523/JNEUROSCI.4248-08.2008.

    Article  CAS  PubMed  Google Scholar 

  30. Schoen I, Fromherz P. Extracellular stimulation of mammalian neurons through repetitive activation of Na + channels by weak capacitive currents on a silicon chip. J Neurophysiol. 2008;100(1):346–57. doi:10.1152/jn.90287.2008.

    Article  PubMed  Google Scholar 

  31. Chaieb L, Antal A, Paulus W. Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive. Front Neurosci. 2015;9(April):1–9. doi:10.3389/fnins.2015.00125.

    Google Scholar 

  32. Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobeh Rev. 2013;37(8):1702–12. doi:10.1016/j.neubiorev.2013.06.014.

    Article  Google Scholar 

  33. Cappelletti M, Gessaroli E, Hithersay R, Mitolo M, Didino D, Kanai R, et al. Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. J Neurosci. 2013;33(37):14899–907. doi:10.1523/JNEUROSCI.1692-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Snowball A, Tachtsidis I, Popescu T, Thompson J, Delazer M, Zamarian L, et al. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr Biol. 2013;23(11):987–92. doi:10.1016/j.cub.2013.04.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Groppa S, Bergmann TO, Siems C, Mölle M, Marshall L, Siebner HR. Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans. Neuroscience. 2010;166(4):1219–25. doi:10.1016/j.neuroscience.2010.01.019.

    Article  CAS  PubMed  Google Scholar 

  36. Eggert T, Dorn H, Sauter C, Nitsche M a, Bajbouj M, Danker-Hopfe H. No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects. Brain Stimul. 2013;6(6):938–45. doi:10.1016/j.brs.2013.05.006.

    Article  PubMed  Google Scholar 

  37. Marshall L, Mölle M, Hallschmid M, Born J. Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci. 2004;24(44):9985–92. doi:10.1523/JNEUROSCI.2725-04.2004.

    Article  CAS  PubMed  Google Scholar 

  38. Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med. 2005;2(6), e153. doi:10.1371/journal.pmed.0020153.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vanneste S, Fregni F, De Ridder D. Head-to-head comparison of transcranial random noise stimulation, transcranial ac stimulation, and transcranial DC stimulation for tinnitus. Front Psychiatry. 2013;4:31–3. doi:10.3389/fpsyt.2013.00158.

    Article  Google Scholar 

  40. Joos K, De Ridder D, Vanneste S. The differential effect of low-versus high-frequency random noise stimulation in the treatment of tinnitus. Exp Brain Res. 2015;233(5):1433–40. doi:10.1007/s00221-015-4217-9.

    Article  PubMed  Google Scholar 

  41. Alm P, Dreimanis K. Neuropathic pain: transcranial electric motor cortex stimulation using high frequency random noise. Case report of a novel treatment. J Pain Res. 2013;6:479. doi:10.2147/JPR.S44648.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Krause V, Wach C, Südmeyer M, Ferrea S, Schnitzler A, Pollok B. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease. Front Hum Neurosci. 2013;7:928. doi:10.3389/fnhum.2013.00928.

    Article  PubMed  Google Scholar 

  43. Fedorov A, Jobke S, Bersnev V, Chibisova A, Chibisova Y, Gall C, et al. Restoration of vision after optic nerve lesions with noninvasive transorbital alternating current stimulation: a clinical observational study. Brain Stimul. 2011;4(4):189–201. doi:10.1016/j.brs.2011.07.007.

    Article  CAS  PubMed  Google Scholar 

  44. Gall C, Fedorov AB, Ernst L, Borrmann A, Sabel B a. Repetitive transorbital alternating current stimulation in optic neuropathy. NeuroRehabilitation. 2010;27:335–41. doi:10.3233/NRE-2010-0617.

    PubMed  Google Scholar 

  45. Herrmann CS, Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol. 2005;116(12):2719–33. doi:10.1016/j.clinph.2005.07.007.

    Article  CAS  PubMed  Google Scholar 

  46. Meiron O, Lavidor M. Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary. Clin Neurophysiol. 2014;125(1):77–82. doi:10.1016/j.clinph.2013.06.013.

    Article  PubMed  Google Scholar 

  47. Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 2015;8(3):499–508. doi:10.1016/j.brs.2014.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ambrus GG, Antal A, Paulus W. Comparing cutaneous perception induced by electrical stimulation using rectangular and round shaped electrodes. Clin Neurophysiol. 2011;122(4):803–7. doi:10.1016/j.clinph.2010.08.023.

    Article  PubMed  Google Scholar 

  49. Paulus W. Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychol Rehabil. 2011;21(5):602–17. doi:10.1080/09602011.2011.557292.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG (PA 419/15-1) awarded to W.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Antal Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Antal, A., Alekseichuk, I., Paulus, W. (2016). The New Modalities of Transcranial Electric Stimulation: tACS, tRNS, and Other Approaches. In: Brunoni, A., Nitsche, M., Loo, C. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-33967-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33967-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33965-8

  • Online ISBN: 978-3-319-33967-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics