Advertisement

Scheduling Home Hospice Care with Logic-Based Benders Decomposition

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9676)

Abstract

We propose an exact optimization method for home hospice care staffing and scheduling, using logic-based Benders decomposition (LBBD). The objective is to match hospice care aides with patients and schedule visits to patient homes, so as to maximize the number of patients serviced by available staff, while meeting requirements of the patient plan of care and scheduling constraints imposed by the patients and the staff. The Benders master problem assigns aides to patients and days of the week and is solved by mixed integer programming (MIP). The routing and scheduling subproblem decouples by aide and day of the week and is solved by constraint programming. We report preliminary computational results for problem instances obtained from a major hospice care provider. We find that LBBD is superior to state-of-the-art MIP and solves problems of realistic size, if the aim is to conduct staff planning on a rolling basis while maintaining continuity of the care arrangement for patients currently receiving service.

Keywords

Home health care problem Routing and scheduling Logic-based Benders decomposition Home hospice care 

References

  1. 1.
    Hertz, A., Lahrichi, N.: A patient assignment algorithm for home care service. J. Oper. Res. Soc. 60, 481–495 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Trautsamwieser, A., Hirsch, P.: Optimization of daily scheduling for home health care services. J. Appl. Oper. Res. 3, 124–136 (2011)Google Scholar
  3. 3.
    Nickel, S., Schröder, M., Steeg, J.: Mid-term and short-term planning support for home health care services. Eur. J. Oper. Res. 219, 574–587 (2012)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ciré, A., Hooker, J.N.: A heuristic logic-based Benders method for the home health care problem. Presented at Matheuristics 2012, Angra dos Reis, Brazil (2012)Google Scholar
  5. 5.
    Rendl, A., Prandtstetter, M., Hiermann, G., Puchinger, J., Raidl, G.: Hybrid heuristics for multimodal homecare scheduling. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 339–355. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Allaoua, H., Borne, S., Létocart, L., Calvo, R.W.: A matheuristic approach for solving a home health care problem. Electron. Notes Discrete Math. 41, 471–478 (2013)CrossRefGoogle Scholar
  7. 7.
    Cappanera, P., Scutellà, M.G.: Joint assignment, scheduling and routing models to home care optimization: a pattern-based approach. Transp. Sci. 49, 830–852 (2014)CrossRefGoogle Scholar
  8. 8.
    Yalçındağ, S., Matta, A., Şahin, E., Shanthikumar, J.G.: A two-stage approach for solving assignment and routing problems in home health care services. In: Matta, A., Li, J., Sahin, E., Lanzarone, E., Fowler, J. (eds.) Proceedings of the International Conference on Health Care Systems Engineering. Proceedings in Mathematics and Statistics, vol. 61, pp. 47–59. Springer, New York (2014)CrossRefGoogle Scholar
  9. 9.
    Mankowska, D.S., Meisel, F., Bierwirth, C.: The home health care routing and scheduling problem with interdependent services. Health Care Manage. Sci. 17, 15–30 (2014)CrossRefGoogle Scholar
  10. 10.
    Rest, K.D., Hirsch, P.: Daily scheduling of home health care services using time-dependent public transport. Flexible Services and Manufacturing Journal (published online 2015)Google Scholar
  11. 11.
    Dohn, A., Kolind, E., Clausen, J.: The manpower allocation problem with time windows and job-teaming constraints: a branch-and-price approach. Comput. Oper. Res. 36, 1145–1157 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rasmussen, M.S., Justesen, T., Dohn, A., Larsen, J.: The home care crew scheduling problem: preference-based visit clustering and temporal dependencies. Eur. J. Oper. Res. 219, 598–610 (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Chahed, S., Marcon, E., Sahin, E., Feillet, D., Dallery, Y.: Exploring new operational research opportunities within the home care context: the chemotherapy at home. Health Care Manage. Sci. 12, 179–191 (2009)CrossRefGoogle Scholar
  14. 14.
    Hooker, J.N.: Logic-based Benders decomposition. In: INFORMS National Meeting (1995)Google Scholar
  15. 15.
    Hooker, J.N., Yan, H.: Logic circuit verification by Benders decomposition. In: Saraswat, V., Hentenryck, P.V. (eds.) Principles and Practice of Constraint Programming: The Newport Papers, pp. 267–288. MIT Press, Cambridge (1995)Google Scholar
  16. 16.
    Hooker, J.N.: Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction. Wiley, New York (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Math. Program. 96, 33–60 (2003)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hooker, J.N.: Planning and scheduling by logic-based Benders decomposition. Oper. Res. 55, 588–602 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4, 238–252 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hooker, J.N.: A hybrid method for planning and scheduling. Constraints 10, 385–401 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hooker, J.N.: An integrated method for planning and scheduling to minimize tardiness. Constraints 11, 139–157 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ciré, A., Çoban, E., Hooker, J.N.: Logic-based Benders decomposition for planning and scheduling: a computational analysis. In: Barták, R., Salido, M.A. (eds.) COPLAS Proceedings, pp. 21–29 (2015)Google Scholar
  23. 23.
    Jain, V., Grossmann, I.E.: Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS J. Comput. 13, 258–276 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Harjunkoski, I., Grossmann, I.E.: Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Comput. Chem. Eng. 26, 1533–1552 (2002)CrossRefGoogle Scholar
  25. 25.
    Harjunkoski, I., Grossmann, I.E.: A decomposition approach for the scheduling of a steel plant production. Comput. Chem. Eng. 25, 1647–1660 (2001)CrossRefGoogle Scholar
  26. 26.
    Liu, W., Gu, Z., Xu, J., Wu, X., Ye, Y.: Satisfiability modulo graph theory for task mapping and scheduling on multiprocessor systems. IEEE Trans. Parallel Distrib. Syst. 22, 1382–1389 (2011)CrossRefGoogle Scholar
  27. 27.
    Lombardi, M., Milano, M., Ruggiero, M., Benini, L.: Stochastic allocation and scheduling for conditional task graphs in multi-processor systems-on-chip. J. Sched. 13, 315–345 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Cambazard, H., Hladik, P.-E., Déplanche, A.-M., Jussien, N., Trinquet, Y.: Decomposition and learning for a hard real time task allocation problem. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 153–167. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Chu, Y., Xia, Q.: Generating Benders cuts for a class of integer programming problems. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 127–141. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Maravelias, C.T., Grossmann, I.E.: Using MILP and CP for the scheduling of batch chemical processes. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Maravelias, C.T., Grossmann, I.E.: A hybrid MILP/CP decomposition approach for the continuous time scheduling of multipurpose batch plants. Comput. Chem. Eng. 28, 1921–1949 (2004)CrossRefGoogle Scholar
  32. 32.
    Terekhov, D., Beck, J.C., Brown, K.N.: Solving a stochastic queueing design and control problem with constraint programming. In: Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI 2007), vol. 1, pp. 261–266. AAAI Press (2007)Google Scholar
  33. 33.
    Benini, L., Bertozzi, D., Guerri, A., Milano, M.: Allocation and scheduling for MPSoCs via decomposition and no-good generation. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 107–121. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Ciré, A., Coban, E., Hooker, J.N.: Mixed integer programming vs. logic-based Benders decomposition for planning and scheduling. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 325–331. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  35. 35.
    Desrochers, M., Lenstra, J.K., Savelsbergh, M.W.P., Soumis, F.: Vehicle routing with time windows: optimization and approximation. In: Golden, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies, pp. 65–84. North-Holland, Amsterdam (1988)Google Scholar
  36. 36.
    Desrochers, M., Laporte, G.: Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Oper. Res. Lett. 10, 27–36 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Cordeau, J.F., Laporte, G., Savelsbergh, M., Vigo, D.: Vehicle routing. In: Barnhart, C., Laporte, G. (eds.) Handbook in Operations Research and Management Science, vol. 14, pp. 367–428. Elsevier, Amsterdam (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Compassionate Care Hospice GroupNew YorkUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations