Dense Shelf Water Cascading and Associated Bedforms

  • Pere PuigEmail author


Sea-atmosphere interactions play an important role in oceanographic processes at various spatial and temporal scales. In the world oceans, several regions are key spots of intense air-sea interactions which considerably affect the heat and water budgets. An example of this is the formation of dense waters by cooling, evaporation or freezing over continental shelf regions. Dense shelf waters can eventually cascade to greater depths over the continental slope, being occasionally channelized through submarine canyons, until they reach an equilibrium depth of equal density. The enhanced current velocities associated with this oceanographic process are capable of generating erosive and depositional bedforms along the dense water pathways.


Dense shelf water Cascading Sediment waves Sedimentary furrows 


  1. Allen, S.E., Durrieu de Madron, X. (2009). A review of the role of submarine canyons in deep-ocean exchange with the shelf. Ocean Sci., 5: 607–620.Google Scholar
  2. Béthoux, J.P., Durrieu de Madron, X., Nyffeler, F., Tailliez, D. (2002). Deep water in the western Mediterranean: peculiar 1999 and 2000 characteristics, shelf formation hypothesis, variability since 1970 and geochemical inferences, J. Marine Syst., 33–34: 117–131.Google Scholar
  3. Bougis, P., Ruivo, M., (1954). Sur une descente des eaux superficielles en profondeur (cascading) dans le sud du Golfe du Lion. Bulletin d’Information du Comité Central d’Océanographie et d’Etude des Côtes, 6, 147–154.Google Scholar
  4. Canals, M., Puig, P., Durrieu de Madron, X., Heussner, S., Palanques, A., Fabrés, J. (2006). Flushing submarine canyons. Nature, 444 (7117): 354–357.Google Scholar
  5. Cooper, L.N.H., Vaux, D. (1949). Cascading over the continental slope of water from the Celtic Sea. J. Mar. Biol. Assoc. UK, 28: 719–750.Google Scholar
  6. Dufau-Julliand, C., Marsaleix, P., Petrenko, A., Dekeyser, I. (2004). 3D Modelling of the Gulf of Lion’s hydrodynamics (NW Med.) during January 1999 (MOOGLI3 Experiment) and late winter 1999: WIW formation and cascading over the shelf break. J. Geophys. Res., 109, C11002.Google Scholar
  7. Durrieu de Madron, X., Zervakis, V., Theocharis, A., Georgopoulos, D. (2005). Comments on “Cascades of dense water around the world ocean”. Prog. Oceanogr., 64: 83–90.Google Scholar
  8. Durrieu de Madron, X., Houpert, L., Puig, P., Sanchez-Vidal, A., Testor, P., Bosse, A., Estournel, C., Somot, S., Bourrin, F., Bouin, M.N., Beauverger, M., Beguery, L., Calafat, A., Canals, M., Cassous, C., Coppola, L., Dausse, D., D’Ortenzio, F., Font, J., Heussner, S., Kunesch, S., Lefevre, D., Le Goff, H., Martín, J., Mortier, L., Palanques, A., Raimbault, P. (2013). Interaction of dense shelf water cascading and open-sea convection in the Northwestern Mediterranean during winter 2012. Geophys. Res. Lett., 40: 1379–1385.Google Scholar
  9. Fieux, M. (1974). Formation d’eau dense sur le plateau du golfe du Lion. In: Processus de formation des eaux profondes. Colloques Internationaux du CNRS, 215: 165–174.Google Scholar
  10. Foglini, F., Campiani, E., Trincardi, F. (2015). The reshaping of the South West Adriatic Margin by cascading of dense shelf waters. Mar. Geol., in press.Google Scholar
  11. Font, J., Puig, P., Salat, J., Palanques, A., Emelianov, M. (2007). Sequence of hydrographic changes in the NW Mediterranean deep water due to the exceptional winter 2005. Sci. Mar., 72: 339–346.Google Scholar
  12. Fohrmann, H., Backhaus, J.O., Blaume, F., Rumohr, J. (1998). Sediments in bottom-arrested gravity plumes: Numerical case studies. J. Phys. Oceanogr., 28: 2250–2274.Google Scholar
  13. García-García, A., Schoolmeester, T., Orange, D., Calafat, A., Fabres, J., Grossman, E., Field, M., Lorenson, T.D., Levey, M., Sansoucy, M. (2012). Recent sedimentary processes in the Cap de Creus canyon head and adjacent continental shelf, NE spain: evidence from multibeam bathymetry, sub-bottom profiles and coring. Int. Assoc. Sedimentol. Spec. Publ., 44: 71–98.Google Scholar
  14. Heussner, S., Durrieu de Madron, X., Calafat, A., Canals, M., Carbonne, J., Delsaut, N., Saragoni, G. (2006). Spatial and temporal variability of downward particle fluxes on a continental slope: Lessons from an 8-yr experiment in the Gulf of Lions (NW Mediterranean). Mar. Geol., 234: 63–92.Google Scholar
  15. Hill, A.E., Souza, A.J., Jones, K., Simpson, J.H., Shapiro, G.I., McCandliss, R., Wilson, H., Leftley, J. (1998). The Malin cascade in winter 1996. J. Mar. Res., 56: 87–106.Google Scholar
  16. Ivanov, V.V., Shapiro, G.I., Huthnance, J.M., Aleynik, D.L. Golovin, P.N. (2004). Cascades of dense water around the world ocean. Prog. Oceanogr., 60: 47–98.Google Scholar
  17. Jallet, L., Giresse, P. (2005). Construction of the Pyreneo-Languedocian Sedimentary Ridge and associated sediment waves in the deep western Gulf of Lions (Western Mediterranean). Mar. Petrol. Geol., 22: 865–888.Google Scholar
  18. Killworth P. (1983). Deep convection in the world Oceans. Rev. Geophys. Space Phys. 21: 1–26.Google Scholar
  19. Lapouyade, A., Durrieu de Madron, X. (2001). Seasonal variability of the advective transport of particulate matter and organic carbon in the Gulf of Lion (NW Mediterranean). Oceanol. Acta, 24: 295–312.Google Scholar
  20. Lastras, G., Canals, M., Urgeles, R., Amblas, D., Ivanov, M., Droz, L., Dennielou, B., Fabrés, J., Schoolmeester, T., Akhmetzhanov, A., Orange, D., García-García, A. (2007). A walk down the Cap de Creus canyon, Northwestern Mediterranean Sea: Recent processes inferred from morphology and sediment bedforms. Mar. Geol., 246: 176–192.Google Scholar
  21. MEDOC group. (1970). Observation of formation of deep water in the Mediterranean Sea, 1969. Nature, 227: 1037–1040.Google Scholar
  22. Millot, C.A. (1990). The Gulf of Lions’ hydrodynamic. Cont. Shelf Res., 10, 885–894.Google Scholar
  23. Nansen, F. (1906). Northern Waters. Captain Roald Amundsen’s oceanographic observations in the Arctic Seas in 1901. In: Vid-selskap. Skrifter I, Mat.-Naturv. kl. 1(3), Dybvad, Christiania, 145 p.Google Scholar
  24. Nansen, F. (1913). The waters of the north-eastern North Atlantic, In: Internationale Revue der Gesamten Hydrobiologie und Hydrographie. Suppl. to Bd.4, 139 p.Google Scholar
  25. Niemann, H., Richter, C., Jonkers, H.M., Badran, M.I. (2004). Red Sea gravity currents cascade near-reef phytoplankton to the twilight zone, Mar. Ecol. Prog. Ser., 269: 91–99.Google Scholar
  26. Palanques, A., Durrieu de Madron, X., Puig, P., Fabrés, J., Guillén, J., Calafat, A., Canals, M., Heussner, S., Bonnin, J. (2006). Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons. The role of storms and dense water cascading. Mar. Geol., 234: 43–61.Google Scholar
  27. Person, R. (1974). Un exemple de descente des eaux superficielles du plateau continental dans un canyon du Golfe du Lion. Colloques Internationaux du CNRS, 215: 175–189.Google Scholar
  28. Puig, P., Palanques, A., Orange, D.L., Lastras, G., Canals, M. (2008). Dense shelf water cascades and sedimentary furrow formation in the Cap de Creus Canyon, northwestern Mediterranean Sea. Cont. Shelf Res., 28: 2017–2030.Google Scholar
  29. Ribó, M., Durán, R., Puig, P., Van Rooij, D., Guillén, J. (2016). Large sediment waves over the Gulf of Roses continental slope (NW Mediterranean), this issue.Google Scholar
  30. Shapiro, G.I., Hill, A.E. (1997). Dynamics of Dense Water Cascades at the Shelf Edge. J. Phys. Ocean., 27: 2381–2394.Google Scholar
  31. Shapiro, G.I., Huthnance, J.M., Ivanov, V.V. (2003). Dense Water Cascading off the Continental Shelf. J. Geophys. Res., 108. C12, 3390.Google Scholar
  32. Trincardi F., Verdicchio G., Miserocchi S. (2007). Sea-floor evidence for the interaction between Cascading and along-slope bottom-water masses. J. Geophys. Res., 112, F03011.Google Scholar
  33. Verdicchio, G., Trincardi, F. (2006). Short-distance variability in slope bed-forms along the Southwestern Adriatic Margin (Central Mediterranean). Mar. Geol., 234: 271–292.Google Scholar
  34. Verdicchio, G., Trincardi, F., Asioli, A. (2007). Mediterranean bottom-current deposits: an example from the Southwestern Adriatic Margin. In: Viana, A.R. and Rebesco, M. (eds.) Economic and Palaeoceanographic Significance of Contourite Deposits. Geol. Soc. SP, 276: 183–204.Google Scholar
  35. Vilibič, I., Supic, N. (2005). Dense water generation on a shelf: the case of the Adriatic Sea. Ocean. Dynam. 55: 403–415.Google Scholar
  36. Zoccolotti, L., Salusti, E. (1987). Observations of a vein of very dense marine water in the southern Adriatic Sea. Cont. Shelf Res., 7: 535–551.Google Scholar
  37. Zore-Armanda, M. (1963). Les masses d’eau de la mer Adriatique. Acta Adriatica, 10: 5–88.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la BarcelonetaBarcelonaSpain

Personalised recommendations