Internal Waves and Bedforms

  • Hans van HarenEmail author


The physics of internal waves in the density-stratified deep sea is reviewed with the aim of understanding the waves’ potential effects on undular bedforms, ‘sediment waves’, at the seafloor. Such bedforms occur mainly on continental slopes. Sloping topography is also a prerequisite for internal wave breaking, which is the dominant process for sediment resuspension in the deep sea. Internal and sediment waves have common horizontal length scales. They differ in vertical length scale and, foremost, in propagation velocity and age.


Internal waves Sediment waves Sloping topography Turbulent bores Inertial motions 


  1. Armi, L. (1978). Some evidence for boundary mixing in the deep ocean, J. Geophys. Res., 83, 1971–1979.Google Scholar
  2. Cacchione, D.A., and D.E. Drake (1986). Nepheloid layers and internal waves over continental shelves and slopes, Geo-Mar. Lett., 16, 147–152.Google Scholar
  3. Hosegood, P., J. Bonnin, and H. van Haren (2004). Solibore-induced sediment resuspension in the Faeroe-Shetland Channel, Geophys. Res. Lett., 31, L09301, doi: 10.1029/2004GL019544.
  4. Klymak, J.M., and J.N. Moum (2003). Internal solitary waves of elevation advancing on a shoaling shelf, Geophys. Res. Lett., 30, 2045, doi: 10.1029/2003GL017706.
  5. Lamb, K.G. (2014). Internal wave breaking and dissipation mechanisms on the continental slope/shelf, Ann. Rev. Fluid Mech., 46, 231–254.Google Scholar
  6. LeBlond, P.H., and L.A. Mysak (1978). Waves in the Ocean, 602 pp., Elsevier, New York.Google Scholar
  7. McPhee-Shaw, E.E., and E. Kunze (2002). Boundary-layer intrusions from a sloping bottom: A mechanism for generating intermediate nepheloid layers, J. Geophys. Res. 107, doi: 10.1029/2001JC000801.
  8. Munk, W., and C. Wunsch (1998). Abyssal recipes II: Energetics of tidal and wind mixing, Deep-Sea Res. I, 45, 1977–2010.Google Scholar
  9. Puig, P., A.S. Ogston, J. Guillén, A.M.V. Fain and A. Palanques (2007). Sediment transport processes from the topset to the foreset of a crenulated clinoform (Adriatic Sea), Cont. Shelf Res., 27, 452–474.Google Scholar
  10. Ribó, M., et al. (2016). Large fine-grained sediment waves over the Valencia slope, This book. Google Scholar
  11. Urgeles, R., et al. (2011). A review of undulated sediment features on Mediterranean prodeltas: distinguishing sediment transport structures from sediment deformation, Mar. Geophys. Res., 32, 49–69.Google Scholar
  12. van Haren, H., and L. Gostiaux (2012). Detailed internal wave mixing observed above a deep-ocean slope, J. Mar. Res., 70, 173–197.Google Scholar
  13. van Haren, H., M. Ribó, and P. Puig (2013). (Sub-)inertial wave boundary turbulence in the Gulf of Valencia, J. Geophys. Res., 118, 2067–2073, doi: 10.1002/jgrc.20168.
  14. van Haren, H., A. Cimatoribus, and L. Gostiaux (2015). Where large deep-ocean waves break, Geophys. Res. Lett., 42, 2351–2357, doi: 10.1002/2015GL063329.
  15. Verdicchio, G., and F. Trincardi (2006). Short-distance variability in slope bed-forms along the Southwestern Adriatic Margin (Central Mediterranean), Mar. Geol., 234, 271–292.Google Scholar
  16. Vlasenko, V., and K. Hutter (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography, J. Phys. Oceanogr., 32, 1779–1793.Google Scholar
  17. Zhang, H.P., B. King and H.L. Swinney (2008). Resonant generation of internal wave on a model continental slope, Phys. Rev. Lett., 100, 244504.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Royal Netherlands Institute for Sea Research (NIOZ)Den Burgthe Netherlands

Personalised recommendations