Skip to main content

Internal Waves and Bedforms

  • Chapter
  • First Online:
Atlas of Bedforms in the Western Mediterranean
  • 927 Accesses

Abstract

The physics of internal waves in the density-stratified deep sea is reviewed with the aim of understanding the waves’ potential effects on undular bedforms, ‘sediment waves’, at the seafloor. Such bedforms occur mainly on continental slopes. Sloping topography is also a prerequisite for internal wave breaking, which is the dominant process for sediment resuspension in the deep sea. Internal and sediment waves have common horizontal length scales. They differ in vertical length scale and, foremost, in propagation velocity and age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armi, L. (1978). Some evidence for boundary mixing in the deep ocean, J. Geophys. Res., 83, 1971–1979.

    Google Scholar 

  • Cacchione, D.A., and D.E. Drake (1986). Nepheloid layers and internal waves over continental shelves and slopes, Geo-Mar. Lett., 16, 147–152.

    Google Scholar 

  • Hosegood, P., J. Bonnin, and H. van Haren (2004). Solibore-induced sediment resuspension in the Faeroe-Shetland Channel, Geophys. Res. Lett., 31, L09301, doi:10.1029/2004GL019544.

  • Klymak, J.M., and J.N. Moum (2003). Internal solitary waves of elevation advancing on a shoaling shelf, Geophys. Res. Lett., 30, 2045, doi:10.1029/2003GL017706.

  • Lamb, K.G. (2014). Internal wave breaking and dissipation mechanisms on the continental slope/shelf, Ann. Rev. Fluid Mech., 46, 231–254.

    Google Scholar 

  • LeBlond, P.H., and L.A. Mysak (1978). Waves in the Ocean, 602 pp., Elsevier, New York.

    Google Scholar 

  • McPhee-Shaw, E.E., and E. Kunze (2002). Boundary-layer intrusions from a sloping bottom: A mechanism for generating intermediate nepheloid layers, J. Geophys. Res. 107, doi:10.1029/2001JC000801.

  • Munk, W., and C. Wunsch (1998). Abyssal recipes II: Energetics of tidal and wind mixing, Deep-Sea Res. I, 45, 1977–2010.

    Google Scholar 

  • Puig, P., A.S. Ogston, J. Guillén, A.M.V. Fain and A. Palanques (2007). Sediment transport processes from the topset to the foreset of a crenulated clinoform (Adriatic Sea), Cont. Shelf Res., 27, 452–474.

    Google Scholar 

  • Ribó, M., et al. (2016). Large fine-grained sediment waves over the Valencia slope, This book.

    Google Scholar 

  • Urgeles, R., et al. (2011). A review of undulated sediment features on Mediterranean prodeltas: distinguishing sediment transport structures from sediment deformation, Mar. Geophys. Res., 32, 49–69.

    Google Scholar 

  • van Haren, H., and L. Gostiaux (2012). Detailed internal wave mixing observed above a deep-ocean slope, J. Mar. Res., 70, 173–197.

    Google Scholar 

  • van Haren, H., M. Ribó, and P. Puig (2013). (Sub-)inertial wave boundary turbulence in the Gulf of Valencia, J. Geophys. Res., 118, 2067–2073, doi:10.1002/jgrc.20168.

  • van Haren, H., A. Cimatoribus, and L. Gostiaux (2015). Where large deep-ocean waves break, Geophys. Res. Lett., 42, 2351–2357, doi:10.1002/2015GL063329.

  • Verdicchio, G., and F. Trincardi (2006). Short-distance variability in slope bed-forms along the Southwestern Adriatic Margin (Central Mediterranean), Mar. Geol., 234, 271–292.

    Google Scholar 

  • Vlasenko, V., and K. Hutter (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography, J. Phys. Oceanogr., 32, 1779–1793.

    Google Scholar 

  • Zhang, H.P., B. King and H.L. Swinney (2008). Resonant generation of internal wave on a model continental slope, Phys. Rev. Lett., 100, 244504.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans van Haren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Haren, H. (2017). Internal Waves and Bedforms. In: Guillén, J., Acosta, J., Chiocci, F., Palanques, A. (eds) Atlas of Bedforms in the Western Mediterranean. Springer, Cham. https://doi.org/10.1007/978-3-319-33940-5_5

Download citation

Publish with us

Policies and ethics