Large-Scale Fine-Grained Sediment Waves Over the Gulf of Valencia Continental Slope (NW Mediterranean)

  • Marta RibóEmail author
  • Pere Puig
  • Araceli Muñóz
  • C. Lo Iacono
  • Pere Masqué
  • Albert Palanques
  • Juan Acosta
  • Jorge Guillén
  • María Gómez Ballesteros


Recently acquired swath bathymetry, high-resolution seismic profiles and bottom sediment samples have revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. Like many other deep-water sediment waves, these features were previously attributed to gravitational slope failure related to creep-like deformation, and have now been reinterpreted as sediment wave fields extending from 250 m depth to the continental rise at ~850 m depth. Sediment wave lengths range between 500 and 1000 m and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to a minimum height of 2 m. Seismic profiles showed continuous internal reflectors and several sediment wave packages were differentiated, being thicker on the crest of each wave and thinner on the downslope flank, indicating that these sediment waves are upslope-migrating. The sediment wave formation process was inferred from contemporary hydrodynamic observations, and internal wave activity is suggested to be the most probable mechanism for the sediment transport and deposition and subsequent maintenance of the sediment waves over the Gulf of Valencia continental slope.


Sediment waves Continental slope Gulf of valencia Internal waves 



This work was funded by the project COSTEM (CMT2009-07806) and FORMED (CGL2012-33989). The authors wish to thank the captain and the crew of the R/V García del Cid and the R/V Vizconde de Eza, and also the UTM technicians and J. Pozo and M. Lloret from the Instrumental Service, for their assistance. The author M. Ribó was supported by a FPI grant (Ref. BES-2010-029949) from the Spanish Ministry of Economy and Competitiveness. P. Masqué acknowledges the financial support through the ICREA Academia award and a Gledden Visiting Fellowship awarded by the Institute of Advanced Studies at the University of Western Australia.


  1. Babonneau, N., Cattaneo, A., Barjavel, B. S. G., Déverchère, J., Yelles, K. (2012). The Kramis deep-sea fan off western Algeria: Role of sediment waves in turbiditic levee growth. In: Applications of the principles of seismic geomorphology to continental-slope and base-of-slope systems: casse studies from seafloor and near-seafloor analogues. SEPM Special Publications, No. 99. ISBN 978-1-56576-304-3, p. 293–308.Google Scholar
  2. Bárcenas, P., Fernández-Salas, L. M., Macías, J., Lobo, F. J., Díaz del Río, V. (2009). Estudio morfométrico comparativo entre las ondulaciones de los prodeltas de los ríos de Andalucía Oriental. Revista de la Sociedad Geológica de España, 22, 43–56.Google Scholar
  3. Belde, J., Back, S., Reuning, L. (2015). Three-dimensional seismic analysis of sediment waves and related geomorphological features on a carbonate shelf exposed to large amplitude internal waves, Browse Basin region, Australia. Sedimentology, 62, 87–109Google Scholar
  4. Berndt, C., Cattaneo, A., Szuman, M., Trincardi, F., Masson, D. (2006). Sedimentary structures offshore Ortona, Adriatic Sea-Deformation or sediment waves? Mar. Geol. 234, 261–270. doi: 10.1016/j.margeo.2006.09.016
  5. Cattaneo, A., Correggiari, A., Marsset, T., Thomas, Y., Marsset, B., Trincardi, F. (2004). Seafloor undulation pattern on the Adriatic shelf and comparison to deep-water sediment waves. Mar. Geol. 213, 121–148. doi: 10.1016/j.margeo.2004.10.004.
  6. Díaz del Rio, V., Rey, J., Vegas, R. (1986). The Gulf of Valencia continental shelf: Extensional tectonics in Neogene and Quaternary sediments. Mar. Geol. 73, 169–179.Google Scholar
  7. Díaz del Río, V., Fernández-Salas, L.M. (2005). El margen continental del Levante español y las islas Baleares, in: Mapa Geomorfológico de España Y Del Margen Continental. pp. 177–187.Google Scholar
  8. Ediger, V., Velegrakis, A., Evans, G. (2002). Upper slope sediment waves in the Cilician Basin, northeastern Mediterranean. Marine Geology, 192, 321–333. doi: 10.1016/S0025-3227(02)00562-5.
  9. Faugères, J.C., Gonthier, E., Mulder, T., Kenyon, N., Cirac, P., Griboulard, R., Berné, S., Lesuavé, R. (2002). Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic). Mar. Geol. 182, 279–302.Google Scholar
  10. Fernández-Salas, L. M., Lobo, F. J., Sanz, J. L., Díaz del Río, V., García, M. C., Moreno, I. (2007). Morphometric analysis and genetic implications of pro-deltaic sea-floor undulations in the northern Alboran Sea margin, western Mediterranean Basin. Marine Geology, 243, 31–56.Google Scholar
  11. Font, J., Salat, J., Tintoré, J. (1988). Permanent features of the circulation in the Catalan Sea. Oceanol. Acta 51–57.Google Scholar
  12. Herranz, P., Acosta, J., Muñoz, A., Palomo, C., Carbó, A., Pardo de Donlebum, M., Sanz, J.L., Uchupi, E. (1996). Resultados Preliminares de la primera campaña en la Zona Económica Exclusiva Española en el Golfo de Valencia y mar Balear. ZEE-95. Geogaceta 20, 347–350.Google Scholar
  13. IOC, IHO, BODC. (2003). Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data:
  14. Jallet, L., Giresse, P. (2005). Construction of the Pyreneo-Languedocian Sedimentary Ridge and associated sediment waves in the deep western Gulf of Lions (Western Mediterranean). Marine and Petroleum Geology, 22, 865–888.Google Scholar
  15. Karl, H.A., Cacchione, D.A., Carlson, P.R. (1986). Internal-wave currents as a mechanism to account for large sand waves in Navarinsky canyon head, Bering Sea. J. Sediment. Petrol. 56, 706–714.Google Scholar
  16. Knaapen, M.A.F. (2005). Sandwave migration predictor based on shape information. J. Geophys. Res. 110, F04S11. doi: 10.1029/2004JF000195
  17. Urgeles, R., Cattaneo, A., Puig, P., Liquete, C., De Mol, B., Amblàs, D., Sultan, N., Trincardi, F. (2011). A review of undulated sediment features on Mediterranean prodeltas: distinguishing sediment transport structures from sediment deformation. Mar. Geophys. Res. 32, 49–69. doi: 10.1007/s11001-011-9125-1
  18. Reeder, D.B., Ma, B.B., Yang, Y.J. (2011). Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves. Mar. Geol. 279, 12–18. doi: 10.1016/j.margeo.2010.10.009
  19. Lee, H.J., Syvitski, J.P.M., Parker, G., Orange, D., Locat, J., Hutton, E.W.H., Imran, J. (2002). Distinguishing sediment waves from slope failure deposits: field examples, including the “Humboldt slide”, and modelling results. Mar. Geol. 192, 79–104.Google Scholar
  20. Maestro, A., Medialdea, T., Llave, E., Somoza, L., Bárcenas, P. (2005). Geomorfología submarina. Explicación de los elementos representados, in: Mapa Geomorfológico de España Y Del Margen Continental. pp. 45–58.Google Scholar
  21. Marani, M., Argnani, A., Roveri, M., Trincardi, F. (1993). Sediment drifts and erosional surfaces in the central Mediterranean: seismic evidence of bottom-current activity. Sedimentary Geology, 82, 207–220.Google Scholar
  22. Migeon, S., Savoye, B., Zanella, E., Mulder, T., Faugères, J.C., Weber, O. (2001). Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge (SE France): significance for sediment transport and deposition and for the mechanisms of sediment-wave construction. Marine and Petroleum Geology 18 (2), 179–208.Google Scholar
  23. Millot, C. (1999). Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20, 423–442. doi: 10.1016/S0924-7963(98)00078-5Nash, J.D., Toole, J.M., Schmitt, R.W., 2004. Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr. 34, 1117–1134.
  24. Palanques, A., Puig, P., Guillén, J., Jiménez, J., Gracia, V., Sánchez-Arcilla, A., Madsen, O. (2002). Near-bottom suspended sediment fluxes on the microtidal low-energy Ebro continental shelf (NW Mediterranean). Cont. Shelf Res. 22, 285–303.Google Scholar
  25. Pinot, J.M., Tintoré, J., Gomis, D. (1994). Quasi-synoptic mesoscale variability in the Balearic Sea. Deep Sea Res. I 41, 897–914.Google Scholar
  26. Pinot, J., Tintoré, J., Gomis, D. (1995). Multivariate analysis of the surface circulation in the Balearic Sea. Prog. Oceanogr. 36, 343–376.Google Scholar
  27. Pinot, J.M., López-Jurado, J., Riera, M. (2002). The CANALES experiment (1996–1998). Interannual, seasonal, and mesoscale variability of the circulation in the Balearic Channels. Prog. Oceanogr. 55, 335–370.Google Scholar
  28. Puig, P., Palanques, A., Guillén, J. (2001). Near-bottom suspended sediment variability caused by storms and near-inertial internal waves on the Ebro mid continental shelf (NW Mediterranean). Mar. Geol. 178, 81–93.Google Scholar
  29. Puig, P., Ogston, A.S., Guillén, J., Fain, A.M.V., Palanques, A. (2007). Sediment transport processes from the topset to the foreset of a crenulated clinoform (Adriatic Sea). Continental Shelf Research. 27, 452–474. doi: 10.1016/j.csr.2006.11.005.
  30. Puig, P., Palanques, A., Martín, J., Ribó, M., Guillén, J. (2014). Benthic storms in the north-western Mediterranean continental rise caused by deep dense wáter formation. In: 2nd Deep-Water Circulation Congress, 10–12 Sept. 2014, Ghent, Belgium.Google Scholar
  31. Rebesco, M., Neagu, R. C., Cuppari, A., Muto, F., Accettella, D., Dominici, R., Cova, A., Romano, C., Caburlotto, A. (2009). Morphobathymetric analysis and evidence of submarine mass movements in the western Gulf of Taranto (Calabria margin, Ionian Sea). Int. J. Earth Sci (Geol Rundshc), 98, 791–805.Google Scholar
  32. Ribó, M., Puig, P., Salat, J., Palanques, A. (2013). Nepheloid layer distribution in the Gulf of Valencia, northwestern Mediterranean. J. Mar. Syst. 111–112, 130–138. doi: 10.1016/j.jmarsys.2012.10.008
  33. Ribó, M., Puig, P., van Haren, H. (2015). Hydrodynamics over the Gulf of Valencia continental slope and their role in sediment transport. Deep Sea Res. I, 95, 54–66. doi: 10.1016/j.dsr.2014.10.004
  34. Salat, J. (1995). The interaction between the Catalan and Balearic currents in the southern Catalan Sea. Oceanol. Acta 18, 227–234.Google Scholar
  35. Sanchez-Cabeza, J.A., Masqué, P., Ani-Ragolta, I. (1998). 210Pb and 210Po analysis in sediments and soils by microwave acid digestion. J. Radioanal. Nucl. Chem. 227, 19–22.Google Scholar
  36. van Haren, H., Ribó, M., Puig, P. (2013). (Sub-)inertial wave boundary turbulence in the Gulf of Valencia. J. Geophys. Res. Ocean. 118, 2067–2073. doi: 10.1002/jgrc.20168
  37. Verdicchio, G., Trincardi, F. (2006). Short-distance variability in slope bed-forms along the Southwestern Adriatic Margin (Central Mediterranean). Marine Geology, 234, 271–292. doi: 10.1016/j.margeo.2006.09.007.

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Marta Ribó
    • 1
    Email author
  • Pere Puig
    • 1
  • Araceli Muñóz
    • 2
  • C. Lo Iacono
    • 3
  • Pere Masqué
    • 4
    • 5
    • 6
  • Albert Palanques
    • 1
  • Juan Acosta
    • 7
  • Jorge Guillén
    • 1
  • María Gómez Ballesteros
    • 7
  1. 1.Institut de Ciències del Mar (ICM-CSIC)BarcelonaSpain
  2. 2.TRAGSATEC-Secretaria General de PescaMadridSpain
  3. 3.Marine Geoscience National Oceanography Centre (NOC)SouthamptonUK
  4. 4.Universitat Autònoma de Barcelona (UAB)BellaterraSpain
  5. 5.Oceans Institute and School of PhysicsThe University of Western AustraliaCrawleyAustralia
  6. 6.School of Natural Sciences and Centre for Marine Ecosystems ResearchEdith Cowan UniversityJoondalupAustralia
  7. 7.Instituto Español de Oceanografía (IEO)MadridSpain

Personalised recommendations