Advertisement

Modelling Bedforms on the Continental Shelf

  • Daniel CalveteEmail author
Chapter

Abstract

A number of morphodynamic models have been developed to simulate the dynamics of large-scale bedform patterns on the continental shelf. Most of the models are based on linear stability analysis and therefore only describe the characteristics of the bedforms at their formation. Apart from studying the principal formation mechanism, the models have taken into account various processes (three-dimensional flows, sediment sorting, wave stirring, tidal constituents, etc) to describe the characteristics of the bedforms at specific locations. Exploration of the finite amplitude regime have also been made with simplified models. Future model developments are needed to explore long-term dynamics.

Keywords

Morphodynamic modelling Continental shelf Tidal sand waves Tidal sand banks Long bed waves Shoreface-connected ridges 

Notes

Acknowledgements

D. Calvete gratefully acknowledges the support through the proyect CTM2015-66225-C2-1-P (MINECO/FEDER).

References

  1. Belderson, R. H. (1986). Offshore tidal and non-tidal sand ridges and sheets: differences in morphology and hydrodynamic setting. In R. J. Knight & J. R. McLean (Eds.), Shelf Sands and Sandstones (pp. 293-301). Can. Soc. Petr. Geol.Google Scholar
  2. Blondeaux, P. (2001). Mechanics of Coastal Forms. Annual Review of Fluid Mechanics, 33(1), 339-370.Google Scholar
  3. Blondeaux, P., de Swart, H. E., & Vittori, G. (2009). Long bed waves in tidal seas: an idealized model. Journal of Fluid Mechanics, 636, 485Google Scholar
  4. Blondeaux, P., & Vittori, G. (2009). Three-dimensional tidal sand waves. Journal of Fluid Mechanics, 618, 1-11.Google Scholar
  5. Blondeaux, P., & Vittori, G. (2010). Formation of tidal sand waves: Effects of the spring-neap cycle. Journal of Geophysical Research: Oceans, 115(10), 1-7.Google Scholar
  6. Blondeaux, P., & Vittori, G. (2011). The formation of tidal sand waves: Fully three-dimensional versus shallow water approaches. Continental Shelf Research, 31(9), 990-996.Google Scholar
  7. Besio, G., Blondeaux, P., Brocchini, M., & Vittori, G. (2004). On the modeling of sand wave migration. Journal of Geophysical Research C: Oceans, 109(4), C04018.Google Scholar
  8. Besio, G., Blondeaux, P., Brocchini, M., Hulscher, S. J. M. H., Idier, D., Knaapen, M. A. F., Németh, A. A. (2008). The morphodynamics of tidal sand waves: A model overview. Coastal Engineering, 55(7-8), 657-670. Google Scholar
  9. Besio, G., Blondeaux, P., & Vittori, G. (2006). On the formation of sand waves and sand banks. Journal of Fluid Mechanics, 557, 1-27.Google Scholar
  10. Calvete, D., & de Swart, H. E. (2003). A nonlinear model study on the long-term behavior of shore face–connected sand ridges. Journal of Geophysical Research, 108(C5), 3169.Google Scholar
  11. Calvete, D., De Swart, H. E., & Falqués, A. (2002). Effect of depth-dependent wave stirring on the final amplitude of shoreface-connected sand ridges. Continental Shelf Research, 22, 2763-2776.Google Scholar
  12. Calvete, D., Falqués, a, de Swart, H. E., & Walgreen, M. (2001). Modelling the formation of shoreface-connected sand ridges on storm-dominated inner shelves. J. Fluid Mech., 441, 169-193.Google Scholar
  13. de Swart, H. E., & Calvete, D. (2003). Non-linear response of shoreface-connected sand ridges to interventions. Ocean Dynamics. Vol. 53, pp. 270-277.Google Scholar
  14. de Swart, H. E., Walgreen, M., Calvete, D., & Vis-Star, N. C. (2008). Nonlinear modelling of shoreface-connected ridges; Impact of grain sorting and interventions. Coastal Engineering, 55(7-8), 642-656.Google Scholar
  15. de Swart, H. E., & Hulscher, S. J. M. H. (1995). Dynamics of large-scale bedforms in coastal seas. In A. Doelman & A. van Harten (Eds.), Nonlinear Dynamics and Pattern Formation in the Natural Environment (pp. 315-331). Addison–Wesley–Longman.Google Scholar
  16. Dodd, N., Falqués, A., Hulscher, S. J. M. H., Rózynski, G., Vittori, G., Blondeaux, P., Calvete, D., and de Swart, H. E. (2003). Understanding Coastal Morphodynamics Using Stability Methods. Journal of Coastal Research, 19, 849-865.Google Scholar
  17. Dyer, K. R., & Huntley, D. A. (1999). The origin, classification and modelling of sand banks and ridges. Continental Shelf Research, 19(10), 1285-1330.Google Scholar
  18. Hulscher, S. J. M. H. (1996). Tidal-induced large-scale regular bed form patterns in a three-dimensional shallow water model. Journal of Geophysical Research, 101(96), 20727.Google Scholar
  19. Hulscher, S. J. M. H., de Swart, H. E., & Vriend, H. J. de. (1993). The generation of offshore tidal sand banks and sand waves. Continental Shelf Research, 13(11), 1183-1204.Google Scholar
  20. Huthnance, J. M. (1973). Tidal current asymmetries over the Norfolk Sandbanks. Estuarine and Coastal Marine Science, 1, 89–99.Google Scholar
  21. Huthnance, J. M. (1982). On one mechanism forming linear sand banks. Estuarine, Coastal and Shelf Science, 14(1), 79-99.Google Scholar
  22. Idier, D., & Astruc, D. (2003). Analytical and numerical modeling of sandbanks dynamics. Journal of Geophysical Research C: Oceans, 108(3), 5-15.Google Scholar
  23. Idier, D., Hommes, S., Briere, C., Roos, P. C., Walstra, D., & Knaapen, M. A. F. (2010). Morphodynamic Models Used to Study the Impact of Offshore Aggregate Extraction: a Review. Journal of Coastal Reseacrh, SI 51, 39-52.Google Scholar
  24. Knaapen, M. A. F., Hulscher, S. J. M. H., De Vriend, H. J., & Stolk, A. (2001). A new type of sea bed waves. Geophysical Research Letters, 28(7), 1323-1326.Google Scholar
  25. Meene, J. W. H. van de, Boersma, J. R., & Terwindt, J. H. J. (1996). Sedimentary structures of combined flow deposits from the shoreface-connected ridges along the central Dutch coast. Marine Geology, 131(3-4), 151-175.Google Scholar
  26. Nnafie, A., de Swart, H. E., Calvete, D., & Garnier, R. (2014a). Modeling the response of shoreface-connected sand ridges to sand extraction on an inner shelf. Ocean Dynamics, 64(5), 723-740.Google Scholar
  27. Nnafie, A., de Swart, H. E., Calvete, D., & Garnier, R. (2014b). Effects of sea level rise on the formation and drowning of shoreface-connected sand ridges, a model study. Continental Shelf Research. 80, 32-48Google Scholar
  28. Nnafie, A., de Swart, H. E., Garnier, R., & Calvete, D. (2015). Dynamics of shoreface-connected and inactive sand ridges on a shelf, Part 2: The role of sea level rise and associated changes in shelf geometry. Continental Shelf Research., vol. 104, pàgs. 63-75Google Scholar
  29. Németh, A. A., Hulscher, S. J. M. H., & Van Damme, R. M. J. (2007). Modelling offshore sand wave evolution. Continental Shelf Research, 27(5), 713-728.Google Scholar
  30. Roos, P. C., & Hulscher, S. J. M. H. (2002). Formation of offshore tidal sand banks triggered by a gasmined bed subsidence. Continental Shelf Research, Vol. 22, pp. 2807-2818.Google Scholar
  31. Roos, P. C., Hulscher, S. J. M., Knaapen, M. A. F., & Damme, R. M. J. V. (2004). The cross-sectional shape of tidal sandbanks: modeling and observations. J. Geophys. Res., 109(F02003), F02003.Google Scholar
  32. Roos, P. C., Wemmenhove, R., Hulscher, S. J. M. H., Hoeijmakers, H. W. M., & Kruyt, N. P. (2007). Modeling the effect of nonuniform sediment on the dynamics of offshore tidal sandbanks. Journal of Geophysical Research: Earth Surface, 112(2).Google Scholar
  33. Sanay, R., Voulgaris, G., & Warner, J. C. (2007). Tidal asymmetry and residual circulation over linear sandbanks and their implication on sediment transport: A process-oriented numerical study. Journal of Geophysical Research: Oceans, 112(12).Google Scholar
  34. Seminara, G. (1998). Stability and Morphodynamics. Meccanica, 33, 59-99.Google Scholar
  35. Stride, A. H. (1982). Offshore tidal sands: processes and deposits. Chapman & Hall.Google Scholar
  36. Tambroni, N., & Blondeaux, P. (2008). Sand banks of finite amplitude. Journal of Geophysical Research, 113(C10), C10028.Google Scholar
  37. Trowbridge, J. H. (1995). A mechanism for the formation and maintenance of shore-oblique sand ridges on storm-dominated shelves. Journal of Geophysical Research, 100(C8), 16071.Google Scholar
  38. Van den Berg, J. H., Sterlini, F., Hulscher, S. J. M. H., & Van Damme, R. M. J. (2012). Non-linear process based modelling of offshore sand waves. Continental Shelf Research, 37, 26-35.Google Scholar
  39. Van Oyen, T., & Blondeaux, P. (2009a). Grain sorting effects on the formation of tidal sand waves. Journal of Fluid Mechanics, 629, 311-342.Google Scholar
  40. Van Oyen, T., & Blondeaux, P. (2009b). Tidal sand wave formation: Influence of graded suspended sediment transport. Journal of Geophysical Research, 114(C7), C07004.Google Scholar
  41. Van Santen, R. B., de Swart, H. E., & Dijk, T. a G. P. van. (2011). Sensitivity of tidal sand wavelength to environmental parameters: A combined data analysis and modelling approach. Continental Shelf Research, 31(9), 966-978.Google Scholar
  42. Vis-Star, N. C., de Swart, H. E., & Calvete, D. (2009). Effect of wave-bedform feedbacks on the formation of, and grain sorting over shoreface-connected sand ridges. Ocean Dynamics, 59(5), 731-749.Google Scholar
  43. Vis-Star, N. C., de Swart, H. E., & Calvete, D. (2008). Patch behaviour and predictability properties of modelled finite-amplitude sand ridges on the inner shelf. Nonlinear Processes in Geophysics, 15(6), 943-955.Google Scholar
  44. Vis-Star, N. C., de Swart, H. E., & Calvete, D. (2007). Effect of wave-topography interactions on the formation of sand ridges on the shelf. Journal of Geophysical Research: Oceans, 112(6)Google Scholar
  45. Walgreen, M., de Swart, H. E., & Calvete, D., (2004). A model for grain-size sorting over tidal sand ridges. In Ocean Dynamics. Vol. 54, pp. 374-384.Google Scholar
  46. Walgreen, M., Calvete, D., & de Swart, H. E. (2002). Growth of large-scale bed forms due to storm-driven and tidal currents: A model approach. Continental Shelf Research, Vol. 22, pp. 2777-2793.Google Scholar
  47. Walgreen, M., de Swart, H. E., & Calvete, D., (2003). Effect of grain size sorting on the formation of shoreface-connected sand ridges. Journal of Geophysical Research, 108(C3), p. 3063.Google Scholar
  48. Zimmerman, J. T. F. (1981). Dynamics, diffusion and geomorphological significance of tidal residual eddies. Nature, 290(5807), 549-555.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Universitat Politècnica de Catalunya—BarcelonaTechBarcelonaSpain

Personalised recommendations