Advertisement

Methods for Analysing Bedform Geometry and Dynamics

  • Thaiënne A. G. P. Van DijkEmail author
  • Roderik C. Lindenbergh
Chapter

Abstract

Rhythmic bedforms of different spatial scales are common in the marine environment. In shallow seas, the monitoring of bedforms is important because changes in morphology may interfere with offshore infrastructure and navigation. In addition, investigating bedform dynamics improves our understanding of the processes that cause their behaviour. Quantified bedform characterization also contributes to the validation of morphodynamic models. Modern, high-precision and high-resolution bathymetric data enable the detailed analysis of bedforms. Several semi-automated methods (e.g. geostatistical and spectral techniques) have been developed to quantify the geometry (size and shape) and dynamics (growth, change in shape and migration) of subaqueous bedforms. An overview of these different approaches is given and differences in use and potential are described.

Keywords

Bedform analysis Spectral analysis Kriging Bedform geometry Sand wave dynamics Review 

Notes

Acknowledgments

This chapter was improved by the comments of Paul P.J. Egberts (TNO, Geological Survey of the Netherlands).

References

  1. Albarracín, S., J. Alcántara-Carrió, I. Montoya-Montes, Á. Fontán-Bouzas, L. Somoza, C.L. Amos and J. Rey Salgado (2014). Relict sand waves in the continental shelf of the Gulf of Valencia (western Mediterranean). Journal of Sea Research 93(): 33–46.Google Scholar
  2. Allen, J.R.L. (1968). Current ripples, their relation to patterns of water and sediment motion. North-Holland publishing company, Amsterdam, 433 pp.Google Scholar
  3. Allen, J.R.L. (1980). Sand waves: a model of origin and internal structure. Sedimentary Geology 26: 281–328.Google Scholar
  4. Ashley, G.M. (1990). Classification of large-scale subaqueous bedforms: a new look on an old problem. Journal of Sedimentary Petrology 60(1): 160–172.Google Scholar
  5. Buijsman, M.C. and H. Ridderinkhof (2008a). Long-term evolution of sand waves in the Marsdiep inlet, II: relation to hydrodynamics. Continental Shelf Research 28(9): 1202–1215.Google Scholar
  6. Buijsman, M.C. and H. Ridderinkhof (2008b). Long term evolution of sand waves in the Marsdiep inlet, I: high-resolution observations. Continental Shelf Research 28(9): 1190–1201.Google Scholar
  7. Cataño-Lopera, Y.A., J.D. Abad and M.H. Garcia (2009). Characterization of bed form morphology generated under combined flows and currents using wavelet analysis. Ocean Engineering 36(9–10): 617–632.Google Scholar
  8. Cataño-Lopera, Y.A. and M.H. Garcia (2006). Geometry and migration characteristics of bedforms under waves and currents Part 2: ripples superimposed on sandwaves. Coastal Engineering 53: 781–792.Google Scholar
  9. Cazenave, P.W., J.K. Dix, D.O. Lambkin and L.C. McNeill (2013). A method for semi-automated objective quantification of linear bedforms from multi-scale digital elevation models. Earth Surface Processes and Landforms 38: 221–236.Google Scholar
  10. Dorst, L.L. (2004). Survey plan improvement by detecting sea floor dynamics in archived echo sounder survey. International Hydrographic Review 5(2): 49–63.Google Scholar
  11. Dorst, L.L. (2009). Estimating sea floor dynamics in the southern North Sea to improve bathymetric survey planning. Published Ph.D. Thesis, University of Twente, 218 pp.Google Scholar
  12. Dorst, L.L., P.C. Roos and S.J.M.H. Hulscher (2011). Spatial differences in sand wave dynamics between the Amsterdam and the Rotterdam region in the Southern North Sea. Continental Shelf Research 31: 1096–1105.Google Scholar
  13. Dorst, L.L., P.C. Roos, S.J.M.H. Hulscher and R.C. Lindenbergh (2009). The estimation of sea floor dynamics from bathymetric surveys of a sand wave area. Journal of Applied Geodesy 3(2): 97–120.Google Scholar
  14. Duffy, G.P. (2012). Patterns of morphometric parameters in a large bedform field: developement and application of a tool for automated bedform morphometry. Irish Journal of Earth Sciences 30: 31–39.Google Scholar
  15. Duffy, G.P. and J.E. Hughes Clarke (2005). Application of spatial cross correlation to detection of migration of submarine sand dunes. Journal of Geophysical Research 110(F04S12).Google Scholar
  16. Ernstsen, V.B., R. Noormets, C. Winter, D. Hebbeln, A. Bartholomä, B.W. Flemming and J. Bartholdy (2006). Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo-Marine Letters 26: 151–163.Google Scholar
  17. Fraccascia, S., C. Winter, V.B. Ernstsen and D. Hebbeln (2011). Bedform evolution: in a tidal inlet referred from wavelet analysis. Journal of Coastal Research 64(Special Issue): 751–755.Google Scholar
  18. Franzetti, M., P. Le Roy, C. Delacourt, T. Garlan, R. Cancouët, A. Sukhovich and A. Deschamps (2013). Giant dune morphologies and dynamics in a deep continental shelf environment: example of the Banc du Four (Western Brittany, France). Marine Geology 346: 17–30.Google Scholar
  19. Galparsoro, I., A. Borja, I. Legorburu, C. Hernández, G. Chust, P. Liria and A. Uriarte (2010). Morphological characteristics of the Basque continental shelf (Bay of Biscay, northern Spain); their implications for integral coastal zone management. Geomorphology 118(3–4): 314–329.Google Scholar
  20. Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford University Press, Oxford, UK pp.Google Scholar
  21. Houthuys, R., A. Trentesaux and P. De Wolf (1994). Storm influences on a tidal sandbank’s surface (Middelkerke Bank, southern North Sea). Marine Geology 121: 23–41.Google Scholar
  22. Hugenholtz, C.H., N. Levin, T.E. Barchyn and M.C. Baddock (2012). Remote sensing and spatial analysis of aeolian sand dunes: A review and outlook. Earth Science Reviews 111: 319–334.Google Scholar
  23. Hughes Clarke, J.E. (2012). Optimal use of multibeam technology in the study of shelf morphodynamics. Sediments, Morphology and Sedimentary Processes on Continental Shelves: Advances in technologies, research and applications., International Association of Sedimentology. Special Publication: 1–28.Google Scholar
  24. IHO (2008). IHO Standards for Hydrographic Surveys. Monaco, International Hydrographic Bureau. Special publication No. 44.Google Scholar
  25. Knaapen, M.A.F., S.J.M.H. Hulscher, H.J. de Vriend and A. Stolk (2001). A new type of sea bed waves. Geophysical Research Letters 28: 1323–1326.Google Scholar
  26. Knaapen, M.A.F., C.N. Van Bergen Henegouw and Y.Y. Hu (2005). Quantifying bedform migration using multi-beam sonar. Geo-Marine Letters.Google Scholar
  27. Lanckneus, J. and G. De Moor (1991). Present-day evolution of sand waves on a sandy shelf bank. Oceanologica Acta, Proceedings of the International Colloqium on the environment of epicontinental seas, Lille, France. 11: 123–127.Google Scholar
  28. Lefebvre, A., V.B. Ernstsen and C. Winter (2011). Bedform characterisation through 2D spectral analysis. Journal of Coastal Research. Special Issue 64 (Conf. Proc. 11th International Coastal Symposium): 781–785.Google Scholar
  29. Lindenbergh, R.C. (2004). Parameter estimation and deformation analysis of sand waves and mega ripples. 2nd International Workshop on Marine sandwave and river dune dynamics (MARID2004), University of Twente, Enschede, Netherlands. 192–199.Google Scholar
  30. Lurton, X. (2002). An introduction to underwater acoustics. Springer, 347 pp.Google Scholar
  31. McCave, I.N. (1971). Sand waves in the North Sea off the coast of Holland. Marine Geology 10: 199–225.Google Scholar
  32. Morelissen, R., S.J.M.H. Hulscher, M.A.F. Knaapen, A.A. Németh and R. Bijker (2003). Mathematical modelling of sand wave migration and the interaction with pipelines. Coastal Engineering 48: 197–209.Google Scholar
  33. Pluymaekers, S., R. Lindenbergh, D. Simons and J.d. Ronde (2007). A deformation analysis of a dynamic estuary using two-weekly MBES surveying. Oceans ‘07, Aberdeen, UK. IEEE.Google Scholar
  34. Santoro, V.C., E. Amore, L. Cavallaro and M. De Lauro (2004). Evolution of sand waves in the Messina Strait, Italy. Ocean Dynamics 54(3–4): 392–398.Google Scholar
  35. Terwindt, J.H.J. (1971). Sand waves in the Southern Bight of the North Sea. Marine Geology 10: 51–67.Google Scholar
  36. Van Dijk, T.A.G.P. and P.J.P. Egberts (2008). The variability of sand wave migration in the North Sea. 3rd International Workshop on Marine and river dune dynamics (MARID2008), University of Leeds, Leeds, UK. 63–68.Google Scholar
  37. Van Dijk, T.A.G.P. and M.G. Kleinhans (2005). Processes controlling the dynamics of compound sand waves in the North Sea, Netherlands. Journal of Geophysical Research 110(F04S10).Google Scholar
  38. Van Dijk, T.A.G.P., M.H.P. Kleuskens, L.L. Dorst, C. Van der Tak, P.J. Doornenbal, A.J.F. Van der Spek, R.M. Hoogendoorn, D. Rodriguez Aguilera, P.J. Menninga and R.P. Noorlandt (2012a). Quantified and applied sea-bed dynamics of the Netherlands Continental Shelf and the Wadden Sea NCK-days 2012: Crossing borders in coastal research, Enschede, Netherlands. 223–227.Google Scholar
  39. Van Dijk, T.A.G.P., R.C. Lindenbergh and P.J.P. Egberts (2008). Separating bathymetric data representing multi-scale rhythmic bedforms: a geostatistical and spectral method compared. Journal of Geophysical Research 113(F04017).Google Scholar
  40. Van Dijk, T.A.G.P., C. Van der Tak, W.P. De Boer, M.H.P. Kleuskens, P.J. Doornenbal, R.P. Noorlandt and V.C. Marges (2011). The scientific validation of the hydrographic survey policy of the Netherlands Hydrographic Office, Royal Netherlands Navy. Deltares, Report 1201907-000-BGS-0008: 165 pp. http://kennisonline.deltares.nl/3/m/search/products.html?q=hydrographic&qtype=1.
  41. Van Dijk, T.A.G.P., S. Van Heteren, M.H.P. Kleuskens, L.M. Vonhögen, P.J. Doornenbal, A.J.F. Van der Spek, R.M. Hoogendoorn, L.L. Dorst and D. Rodriguez Aguilera (2012b). Quantified sea-bed dynamics of the Netherlands Continental Shelf and the Wadden Sea: a morphological and sedimentological approach. Hydro12 - Taking care of the sea, SS Rotterdam, Rotterdam, Netherlands. Hydrographic Society Benelux: 356.Google Scholar
  42. Van Dijk, T.A.G.P., T. Vermaas and M.P. Hijma (2014). KPP Onderzoek Bodemdynamiek 2014: effect van baggeren op bodemdynamiek locatie Maasgeul & pilot koppeling Kust en Zee. Deltares, Report 1209377-010-ZKS-0001: 42 pp. http://kennisonline.deltares.nl/3/m/search/products.html?q=bodemdynamiek&qtype=1.
  43. Van Santen, R.B., H.E. De Swart and T.A.G.P. Van Dijk (2011). Sensitivity of tidal sand wavelength to environmental parameters: A combined data analysis and modelling approach. Continental Shelf Research 31(9): 966–978.Google Scholar
  44. Van Son, S.T.J., R.C. Lindenbergh, M.A. De Schipper, S. De Vries and K. Duijnmayer (2009). Using a personal watercraft for monitoring bathymetric changes at storm scale. Proc. Hydro9, Cape Town, South Africa.Google Scholar
  45. Winter, C. (2011). Macro scale morphodynamics of the German North Sea coast. Journal of Coastal Research SI 64(Proceedings of the ICS2011, Poland): 706–710.Google Scholar
  46. Winter, C. and V.B. Ernstsen (2007). Spectral analysis of compound dunes. 5th IAHR Symposium on River, Coastal and Estuarine Morphodynamics (RCEM 2007), University of Twente, Enschede, The Netherlands Taylor & Francis, 2: 907–911.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Thaiënne A. G. P. Van Dijk
    • 1
    • 2
    Email author
  • Roderik C. Lindenbergh
    • 3
  1. 1.Department of Applied Geology and GeophysicsDeltaresUtrechtThe Netherlands
  2. 2.Department of Water Engineering and ManagementUniversity of TwenteEnschedeThe Netherlands
  3. 3.Department of Geosciences and Remote SensingDelft University of TechnologyDelftThe Netherlands

Personalised recommendations