Implementing a Broadcast Storm Attack on a Mission-Critical Wireless Sensor Network

  • Irina Krivtsova
  • Ilya Lebedev
  • Mikhail Sukhoparov
  • Nurzhan Bazhayev
  • Igor Zikratov
  • Aleksandr Ometov
  • Sergey Andreev
  • Pavel Masek
  • Radek Fujdiak
  • Jiri Hosek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9674)


In this work, we emphasize the practical importance of mission-critical wireless sensor networks (WSNs) for structural health monitoring of industrial constructions. Due to its isolated and ad hoc nature, this type of WSN deployments is susceptible to a variety of malicious attacks that may disrupt the underlying crucial systems. Along these lines, we review and implement one such attack, named a broadcast storm, where an attacker is attempting to flood the network by sending numerous broadcast packets. Accordingly, we assemble a live prototype of said scenario with real-world WSN equipment, as well as measure the key operational parameters of the WSN under attack, including packet transmission delays and the corresponding loss ratios. We further develop a simple supportive mathematical model based on widely-adopted methods of queuing theory. It allows for accurate performance assessment as well as for predicting the expected system performance, which has been verified with statistical methods.


Information security Ad hoc networks Multi-agent systems Vulnerability Device availability Prototyping 


  1. 1.
    Iyengar, S.S., Brooks, R.R.: Distributed Sensor Networks: Sensor Networking and Applications. CRC Press, Boca Raton (2012)CrossRefMATHGoogle Scholar
  2. 2.
    Hendee, J., Gramer, L., Heron, S., Jankulak, M., Amornthammarong, N., Shoemaker, M., Burgess, T., Fajans, J., Bainbridge, S., Skirving, W.: Wireless architectures for coral reef environmental monitoring. In: Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia (2012)Google Scholar
  3. 3.
    Vinel, A., Vishnevsky, V., Koucheryavy, Y.: A simple analytical model for the periodic broadcasting in vehicular ad-hoc networks. In: Proceedings of the GLOBECOM Workshops, pp. 1–5. IEEE (2008)Google Scholar
  4. 4.
    Aslan, Y.E., Korpeoglu, I., Ulusoy, Ö.: A framework for use of wireless sensor networks in forest fire detection and monitoring. Comput. Environ. Urban Syst. 36(6), 614–625 (2012)CrossRefGoogle Scholar
  5. 5.
    Dohler, M., Vilajosana, I., Vilajosana, X., LLosa, J.: Smart cities: An action plan. In: Proceedings of the Barcelona Smart Cities Congress (2011)Google Scholar
  6. 6.
    Andreev, S., Gonchukov, P., Himayat, N., Koucheryavy, Y., Turlikov, A.: Energy efficient communications for future broadband cellular networks. Comput. Commun. 35(14), 1662–1671 (2012)CrossRefGoogle Scholar
  7. 7.
    Rashid, B., Rehmani, M.H.: Applications of wireless sensor networks for urban areas: a survey. J. Netw. Comput. Appl. 60, 192–219 (2016). ElsevierCrossRefGoogle Scholar
  8. 8.
    Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.: Health monitoring of civil infrastructures using wireless sensor networks. In: Proceedings of the 6th International Symposium on Information Processing in Sensor Networks (IPSN), pp. 254–263. IEEE (2007)Google Scholar
  9. 9.
    Pakzad, S.N., Kim, S., Fenves, G.L., Glaser, S.D., Culler, D.E., Demmel, J.W.: Multi-purpose wireless accelerometers for civil infrastructure monitoring. In: Proceedings of the 5th International Workshop on Structural Health Monitoring (IWSHM) (2005)Google Scholar
  10. 10.
    Kumar, P., Ylianttila, M., Gurtov, A., Lee, S.-G., Lee, H.-J.: An efficient and adaptive mutual authentication framework for heterogeneous wireless sensor network-based applications. Sensors 14(2), 2732–2755 (2014)CrossRefGoogle Scholar
  11. 11.
    Sridhar, P., Sheikh-Bahaei, S., Xia, S., Jamshidi, M.: Multi-agent simulation using discrete event and soft-computing methodologies. In: Proceedings of the International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1711–1716. IEEE (2003)Google Scholar
  12. 12.
    Wright, J.: Killerbee: practical ZigBee exploitation framework. In: Proceedings of the 11th ToorCon Conference, San Diego (2009)Google Scholar
  13. 13.
    Chen, Y., Xu, W., Trappe, W., Zhang, Y.: Detecting and localizing wireless spoofing attacks. In: Securing Emerging Wireless Systems, pp. 1–18. Springer, New York (2009)Google Scholar
  14. 14.
    Patwari, N., Hero III, A.O., Perkins, M., Correal, N.S., O’dea, R.J.: Relative location estimation in wireless sensor networks. IEEE Trans. Signal Process. 51(8), 2137–2148 (2003)CrossRefGoogle Scholar
  15. 15.
    Hosek, J., Masek, P., Kovac, D., Ries, M., Kropfl, F.: Universal smart energy communication platform. In: Proceedings of the International Conference on Intelligent Green Building and Smart Grid (IGBSG), pp. 1–4. IEEE (2014)Google Scholar
  16. 16.
    Conti, M., Giordano, S.: Mobile ad hoc networking: milestones, challenges, and new research directions. IEEE Commun. Mag. 52(1), 85–96 (2014)CrossRefGoogle Scholar
  17. 17.
    Page, J., Zaslavsky, A., Indrawan, M.: Countering security vulnerabilities using a shared security buddy model schema in mobile agent communities. In: Proceedings of the First International Workshop on Safety and Security in Multi-Agent Systems (SASEMAS 2004), pp. 85–101 (2004)Google Scholar
  18. 18.
    Zikratov, I.A., Lebedev, I.S., Gurtov, A.V.: Trust and reputation mechanisms for multi-agent robotic systems. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2014. LNCS, vol. 8638, pp. 106–120. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Tseng, Y.-C., Ni, S.-Y., Shih, E.-Y.: Adaptive approaches to relieving broadcast storms in a wireless multihop mobile ad hoc network. IEEE Trans. Comput. 52(5), 545–557 (2003)CrossRefGoogle Scholar
  20. 20.
    Wyglinski, A.M., Huang, X., Padir, T., Lai, L., Eisenbarth, T.R., Venkatasubramanian, K.: Security of autonomous systems employing embedded computing and sensors. Micro, IEEE 33(1), 80–86 (2013)CrossRefGoogle Scholar
  21. 21.
    Lipman, J., Liu, H., Stojmenovic, I.: “Broadcast in ad hoc networks,” in Guide to wireless ad hoc networks, pp. 121–150, Springer, (2009)Google Scholar
  22. 22.
    Hu, Y.-C., Perrig, A., Johnson, D.B.: Rushing attacks and defense in wireless ad hoc network routing protocols. In: Proceedings of the 2nd ACM Workshop on Wireless Security, pp. 30–40. ACM (2003)Google Scholar
  23. 23.
    Tseng, Y.-C., Ni, S.-Y., Chen, Y.-S., Sheu, J.-P.: The broadcast storm problem in a mobile ad hoc network. Wireless Netw. 8(2–3), 153–167 (2002)CrossRefMATHGoogle Scholar
  24. 24.
    Korzun, D.G., Nikolaevskiy, I., Gurtov, A.: Service intelligence support for medical sensor networks in personalized mobile health systems. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2015. LNCS, vol. 9247, pp. 116–127. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  25. 25.
    Kelly IV., C., Ekanayake, V., Manohar, R.: SNAP: A sensor-network asynchronous processor. In: Proceedings of the 9th International Symposium on Asynchronous Circuits and Systems, pp. 24–33. IEEE (2003)Google Scholar
  26. 26.
    Denko, M.K.: Detection and prevention of denial of service (dos) attacks in mobile ad hoc networks using reputation-based incentive scheme. J. Systemics, Cybern. Inf. 3(4), 1–9 (2005)Google Scholar
  27. 27.
    Xu, S., Man, Y., He, H., Zhao, L., Zheng, Y., Wang, T.: A security personnel information collection system based on ZigBee wireless ad-hoc network. In: Proceedings of the International Conference on Computer and Communications (ICCC), pp. 410–414. IEEE (2015)Google Scholar
  28. 28.
    Andreev, S., Koucheryavy, Y., Himayat, N., Gonchukov, P., Turlikov, A.: Active-mode power optimization in OFDMA-based wireless networks. In: Proceedings of the GLOBECOM Workshops, pp. 799–803. IEEE (2010)Google Scholar
  29. 29.
    Telegesis, The ETRX357-DVK development kit is an ideal starting point for development and evaluation of the ETRX357 2.4 GHz ZigBee modules, February 2016.
  30. 30.
    Telegesis, ETRX2 and ETRX3 Series ZigBee Modules AT-Command Dictionary, December 2014.
  31. 31.
    Bisnik, N., Abouzeid, A.A.: Queuing network models for delay analysis of multihop wireless ad hoc networks. Ad Hoc Netw. 7(1), 79–97 (2009)CrossRefGoogle Scholar
  32. 32.
    Andreev, S., Galinina, O., Koucheryavy, Y.: Energy-efficient client relay scheme for machine-to-machine communication. In: Proceedings of the Global Telecommunications Conference (GLOBECOM 2011), pp. 1–5. IEEE (2011)Google Scholar
  33. 33.
    Zhao, J., Govindan, R., Estrin, D.: Computing aggregates for monitoring wireless sensor networks. In: Proceedings of the First International Workshop on Sensor Network Protocols and Applications, pp. 139–148. IEEE (2003)Google Scholar
  34. 34.
    Ni, Y., Ye, X., Ko, J.: Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application. J. Struct. Eng. 136(12), 1563–1573 (2010)CrossRefGoogle Scholar
  35. 35.
    Moltchanov, D., Koucheryavy, Y., Harju, J.: Simple, accurate and computationally efficient wireless channel modeling algorithm. In: Braun, T., Carle, G., Koucheryavy, Y., Tsaoussidis, V. (eds.) WWIC 2005. LNCS, vol. 3510, pp. 234–245. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Li, Z., Chan, T.H., Ko, J.M.: Fatigue analysis and life prediction of bridges with structural health monitoring data–part i: methodology and strategy. Int. J. Fatigue 23(1), 45–53 (2001)CrossRefGoogle Scholar
  37. 37.
    Pearson, K.: X. on the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. London, Edinb., Dublin Philos. Mag. J. Sci. 50(302), 157–175 (1900)CrossRefMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Irina Krivtsova
    • 1
  • Ilya Lebedev
    • 1
  • Mikhail Sukhoparov
    • 1
  • Nurzhan Bazhayev
    • 1
  • Igor Zikratov
    • 1
  • Aleksandr Ometov
    • 2
  • Sergey Andreev
    • 2
  • Pavel Masek
    • 3
  • Radek Fujdiak
    • 3
  • Jiri Hosek
    • 3
  1. 1.Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University)St. PetersburgRussia
  2. 2.Tampere University of TechnologyTampereFinland
  3. 3.Brno University of TechnologyBrnoCzech Republic

Personalised recommendations