Advertisement

Data Aware Communication for Energy Harvesting Sensor Networks

  • Mohamed S. HefeidaEmail author
  • Fahad Saeed
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9674)

Abstract

We propose a Data Aware Communication Technique (DACT) that reduces energy consumption in Energy Harvesting Wireless Sensor Networks (EH-WSN). DACT takes advantage of the data correlation present in household EH-WSN applications to reduce communication overhead. It adapts its functionality according to correlations in data communicated over the EH-WSN and operates independently from spatial and temporal correlations without requiring location information. Our results show that DACT improves communication efficiency of sensor nodes and can help reduce idle energy consumption in an average-size home by up to 90 % as compared to spatial/temporal correlation-based communication techniques.

Keywords

Sensor networks Energy harvesting Energy efficiency Data collection Data redundancy 

References

  1. 1.
    UC Berkeley, LBL, USC/ISI and Xerox Parc, NS-2 documentation and software, Version 2.29, October 2005. http://www.isi.edu/nsnam/ns
  2. 2.
    Aledhari, M., Saeed, F.: Design and implementation of network transfer protocol for big genomic data. In: IEEE International Congress on Big Data (IEEE Big Data Congress 2015). IEEE (2015)Google Scholar
  3. 3.
    Anastasi, G., Falchi, A., Passarella, A., Conti, M., Gregori, E.: Performance measurements of motes sensor networks. In: Proceedings of the ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM 2004, pp. 174–181 (2004)Google Scholar
  4. 4.
    Bajwa, R., Rajagopal, R., Varaiya, P., Kavaler, R.: In-pavement wireless sensor network for vehicle classification. In: Proceedings of the IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 85–96 (2011)Google Scholar
  5. 5.
    Blum, R., Sadler, B.: Energy efficient signal detection in sensor networks using ordered transmissions. IEEE Trans. Signal Process. 56(7), 3229–3235 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cano, C., Bellalta, B., Sfairopoulou, A., Oliver, M., Barcel, J.: Taking advantage of overhearing in low power listening WSNs: A performance analysis of the LWT-MAC protocol. Mob. Netw. Appl. 16, 613–628 (2011). http://dx.doi.org/10.1007/s11036-010-0280-4 CrossRefGoogle Scholar
  7. 7.
    Chen, Z., Khokhar, A.: Self organization and energy efficient TDMA MAC protocol by wake up for wireless sensor networks. In: IEEE SECON, pp. 335–341 (2004)Google Scholar
  8. 8.
    Du, S., Saha, A., Johnson, D.: RMAC: a routing-enhanced duty-cycle MAC protocol for wireless sensor networks. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), pp. 1478–1486, May 2007Google Scholar
  9. 9.
    Hefeida, M., Khokhar, A.: A cross-layer approach for context-aware data gathering in wireless sensor networks. In: Global Communications Conference (GLOBECOM), 2012 IEEE, pp. 238–243 (2012)Google Scholar
  10. 10.
    Hefeida, M., Khokhar, A.: Energy conservation in WSNs: a collaborative information processing approach. In: Wireless Communications and Mobile Computing Conference (IWCMC), 2014 International, pp. 1118–1123, August 2014Google Scholar
  11. 11.
    Hesham, L., Sultan, A., Nafie, M., Digham, F.: Cooperative sensing with sequential ordered transmissions to secondary fusion center. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2988–2991, May 2011Google Scholar
  12. 12.
    Iima, Y., Kanzaki, A., Hara, T., Nishio, S.: Overhearing-based data transmission reduction for periodical data gathering in wireless sensor networks. In: International Conference on Complex, Intelligent and Software Intensive Systems, 2009, CISIS 2009, pp. 1048–1053, March 2009Google Scholar
  13. 13.
    Lee, V.C.: Energy harvesting for wireless sensor network. Ph.D. thesis, University of California, Berkeley (2012)Google Scholar
  14. 14.
    Lin, X., Kwok, Y., Wang, H.: Cross-layer design for energy efficient communication in wireless sensor networks. Wirel. Commun. Mob. Comput. 9(2), 251–268 (2009)CrossRefGoogle Scholar
  15. 15.
    Sartipi, M., Fletcher, R.: Energy-efficient data acquisition in wireless sensor networks using compressed sensing. In: 2011 Data Compression Conference, pp. 223–232. IEEE (2011)Google Scholar
  16. 16.
    Sun, Y., Du, S., Gurewitz, O., Johnson, D.: DW-MAC: a low latency, energy efficient demand-wakeup MAC protocol for wireless sensor networks. In: Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 53–62 (2008)Google Scholar
  17. 17.
    Vuran, M., Akyildiz, I.: Spatial correlation-based collaborative medium access control in wireless sensor networks. IEEE/ACM Trans. Netw. (TON) 14(2), 329 (2006)CrossRefGoogle Scholar
  18. 18.
    Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless sensor networks. In: Proceedings of the IEEE INFOCOM, vol. 3, pp. 1567–1576 (2002)Google Scholar
  19. 19.
    Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. 12(3), 493–506 (2004)CrossRefGoogle Scholar
  20. 20.
    Younis, O., Krunz, M., Ramasubramanian, S.: Node clustering in wireless sensor networks: recent developments and deployment challenges. IEEE Netw. 20(3), 20–25 (2006)CrossRefGoogle Scholar
  21. 21.
    Yu, L., Wang, N., Meng, X.: Real-time forest fire detection with wireless sensor networks. In: Proceedings 2005 International Conference on Wireless Communications, Networking and Mobile Computing, 2005, vol. 2, pp. 1214–1217. IEEE (2005)Google Scholar
  22. 22.
    Zou, Q., Zheng, S., Sayed, A.: Cooperative spectrum sensing via sequential detection for cognitive radio networks. In: IEEE 10th Workshop on Signal Processing Advances in Wireless Communications, 2009. SPAWC 2009, pp. 121–125. IEEE (2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.American University of the Middle EastEqailaKuwait
  2. 2.Western Michigan UniversityKalamazooUSA

Personalised recommendations