Skip to main content

Experimental Methods of Investigation of Electron Spin Interactions Based on ESR Phenomena: Continuous Wave EPR Measurements

  • Chapter
  • First Online:
Electron Spin Interactions in Chemistry and Biology

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1154 Accesses

Abstract

The method of electron spin resonance (ESR, Sect. 3.1) has proven to be the leading approach in the investigation of electron spin interactions in chemistry, biology and physics. Structural and dynamic properties of molecular objects of interest can be measured and characterized by suitable parameters through an arsenal of experimental ESR methods including conventional Continuous wave (CW ESR), electrically (ED ESR) and optically (OD ESR) detected ESR and advanced pulse techniques. The CW technique is used for collecting information of interest through the analysis of ESR spectra or saturation curves, obtained from electron-electron double resonance (ELDOR) or double electron-electron resonance (DEER), electron-nuclear double resonance (ENDOR ) or multifrequency ESR (MF ESR) techniques. OD ESR makes it possible to acquire good ESR, ELDOR and ENDOR spectra using the simple and very sensitive luminescence technique. Application of such methods as two-dimensional ESR (2D ESR), (fried) two-dimensional electron-electron double resonance (2D-ELDOR ), ENDOR with circularly polarized radiofrequency fields (CP-ENDOR), electron-nuclear-nuclear resonance (double ENDOR), proton-electron double resonance imaging (PEDRI), and electron-nuclear-nuclear triple resonance (TRIPLE) can be more informative than simple CW ESR experiments for appropriate systems. Methods of reaction yield detection magnetic resonance (RYDMR) and magnetically affected reaction yield (MARY) can also be used in the context of CW and pulse techniques. This chapter briefly describes theoretical grounds and typical application of the various methods of modern CW ESR spectroscopy, which continue to evolve synergetic and at a rather rapid pace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.J. Hoff (ed.), Advanced EPR. Applications in Biology and Biochemistry (Elsevier, Amsterdam, 1989)

    Google Scholar 

  2. C.P. Poole, Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques (Dover Publcation, 1997)

    Google Scholar 

  3. G.R. Eaton, K.M. Salikhov, S.S. Eaton, Foundations of Modern EPR (World Scientific, Singapore, 1998)

    Book  Google Scholar 

  4. J. Yamauchi, in Likhtenshtein GI, Yamauchi J, Nakatsuji S, Smirnov A., Tamura R. Nitroxides: Application in Chemistry, Biomedicine, and Materials Science (WILEY-VCH, Weinhem, 2008), p. 71

    Google Scholar 

  5. A.I. Smirnov, in Likhtenshtein GI, Yamauchi J, Nakatsuji S, Smirnov A., Tamura R. Nitroxides: Application in Chemistry, Biomedicine, and Materials Science (WILEY-VCH, Weinhem, 2008), p. 121

    Google Scholar 

  6. M.R. Brustolon, Principles and Applications of Electron Paramagnetic Resonance Spectroscopy (Blackwell Publishers, 2008)

    Google Scholar 

  7. W.R Hagen, Biomolecular EPR Spectroscopy (CRC, 2008)

    Google Scholar 

  8. Savitsky A, Mobius K High-Field EPR Spectroscopy on Proteins and Their Model Systems (Wiley-VCH Verlag GmbH, 2009)

    Google Scholar 

  9. G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, Quantitative EPR (Springer, 2010)

    Google Scholar 

  10. B.C. Gilbert, M.J. Davies, K.A. McLauchlan (eds.), Electron Paramagnetic Resonance, a Specialist Periodical Report, vol. 17 (Royal Society of Chemistry, 2010)

    Google Scholar 

  11. G.M. Smith, J. Keeble, O. Schiemann (eds.), Introduction to Modern EPR Spectroscopy (CRC, 2010)

    Google Scholar 

  12. A. Belay, Fluorescence and Electron Paramagnetic Resonance (EPR) Spectroscopy (LAP LAMBERT Academic Publishing, 2011)

    Google Scholar 

  13. S.K. Misra (ed.), Multifrequency Electron Paramagnetic Resonance (Wiley-VCH, New York, 2011)

    Google Scholar 

  14. G.I. Likhtenshtein, Biophysical Labeling Methods in Molecular Biology (Cambridge University Press. Cambridge, NY, 1993)

    Book  Google Scholar 

  15. A. Brunetti, O. Baffa, Radiat. Meas. 32,361 (2000)

    Google Scholar 

  16. E. Husted, A. Beth, in Magnetic Resonance in Biology, vol. 19, ed. by L. Berliner, S. Eaton, G. Eaton (Kluwer Academic Publishers, Dordrecht 2000), p. 155

    Google Scholar 

  17. W. Xiao, Y.-K. Shin, in Magnetic Resonance in Biology, vol. 19, ed. by L. Berliner, S. Eaton, G. Eaton (Kluwer Academic Publishers, Dordrecht 2000), p. 249

    Google Scholar 

  18. M. Portis, Phys. Rev. 91, 1071 (1953)

    Article  ADS  Google Scholar 

  19. T.G. Jr, Castner. Phys. Rev. 115, 1506 (1959)

    Article  Google Scholar 

  20. Ya. S, Lebedev, and V.I. Muromtsev, ESR and Relaxation of Stable Radicals (Khimiya, Moscow, 1972)

    Google Scholar 

  21. A.V. Kulikov, G.I. Likhtenstein, Biofizika 19, 420 (1974)

    Google Scholar 

  22. A.V. Kulikov, G.I. Likhtenstein, Adv. Molecul. Relax. Proc. 10, 47 (1977)

    Article  Google Scholar 

  23. G.I. Likhtenstein, in Magnetic Resonance in Biology, vol. 19, ed. by L. Berliner, S. Eaton, G. Eaton (Kluwer Academic Publishers, Dordrecht 2000), p. 309

    Google Scholar 

  24. A. Lund, E. Sagstuen, A. Sanderud, J. Maruani, Radiat. Res. 172, 753 (2009)

    Article  Google Scholar 

  25. G.I. Likhtenshtein, A.V. Kulikov, A.I. Kotelnikov, V.R. Bogatyrenko, Photobiochem. Photobiol. 3, 178 (1982)

    Google Scholar 

  26. A.V. Kulikov, Mol. Biol. (Moscow) 10, 109 (1976)

    Google Scholar 

  27. K.M. Salikhov, J. Magn. Reson. 63, 241 (1985)

    ADS  Google Scholar 

  28. Shojiro Kimura, Yuya Sawada, Yasuo Narumi, Kazuo Watanabe, Masayuki Hagiwara, Koichi Kindo, Hiroaki Ueda, Phys. Rev. B 92, 144410 (2015)

    Article  ADS  Google Scholar 

  29. K.I. Zamaraev, Yu.N. Molin, K.M. Salikhov, Spin Exchange. Theory and Physicochemical Application (Springer-Verlag. Heidelberg, 1981)

    Google Scholar 

  30. G.I. Likhtenstein, Y.B. Grebentchikov, P.K. Bobodzhanov, Y.V. Kokhanov, Molec. Biol. (Moscow) 4, 782 (1970)

    Google Scholar 

  31. J.S. Hyde, H.M Swartz, W.E. Antholine, The spin probe-spin label methods, in Spin Labeling. Theory and Application, vol. 2, ed. by L. Berliner (Academic Press, New York, 1976), p. 72

    Google Scholar 

  32. C. Altenbach, W. Froncisz, J.S. Hyde, W.L. Hubbell, Biophys. J. 56, 61183 (1989)

    Article  Google Scholar 

  33. K.M. Salikhov, A.B. Doctorov, YuN Molin, K.I. Zamaraev, Spin relaxation of radicals and complexes upon encounters in solution. J. Magnet. Reson. 5, 189 (1971)

    ADS  Google Scholar 

  34. V.N. Parmon, A.I. Kokorin, G.M. Zhidomirov, Stable Biradicals (Nauka, Moscow, 1980)

    Google Scholar 

  35. G.R. Eaton S. S. Eaton, Biol. Magn. Reson. 8, 339 (1989)

    Google Scholar 

  36. S. Ngo, V.V. Chiang, Z. Guo, J. Struct. Biol. 180, 374 (2012)

    Article  Google Scholar 

  37. V. Paredes-García, R.C. Santana, R. Madrid, B. Baldo, A. Vega, E. Spodine, J. Inorg. Biochem. 114, 75 (2012)

    Article  Google Scholar 

  38. H.S. Mchaourab, S. Pfenninger, W.E. Antholine, W.E. Antholine, C.C. Felix, J.S. Hyde, P.M. Kroneck, Biophys. J. 64, 1576 (1993)

    Article  ADS  Google Scholar 

  39. C.S. Klug, T.G. Camenisch, W.L. Hubbell, J.S. Hyde, Biophys. J. 88, 3641 (2005)

    Article  Google Scholar 

  40. E.J. Hustedt, A.H. Beth, Ann. Rev. Biophys. Biomol. Struc. 28, 129 (1999)

    Article  Google Scholar 

  41. C. Riplinger, J.P.Y. Kao, G.M. Rosen, V. Kathirvelu, G.R. Eaton, S.S. Eaton, A. Kutateladze, F. Neese, J. Am. Chem. Soc. 131, 10092 (2009)

    Article  Google Scholar 

  42. S.K Misra, J.H. Freed, in Multifrequency Electron Paramagnetic Resonance, ed. by S.K Misra (Wiley-VCH, New York, 2011), p. 545

    Google Scholar 

  43. A.W. Kittell, E.J. Hustedt, J.S. Hyde, J. Magn. Res. 221, 51 (2012)

    Article  ADS  Google Scholar 

  44. A. Berliner., S. Eaton, G. Eaton (eds.) Magnetic Resonance in Biology. Distance Measurement in Biological Systems by ESR, vol. 19 (Kluwer Academic Publishers, Dordrecht, 2000)

    Google Scholar 

  45. O.Y. Grinberg, A.A. Dubinskii, V.F. Shuvalov, L.G. Oranskii, V.I. Kurochkin, YaS Lebedev, Dokl. Akad. Nauk SSSR 230, 884 (1976)

    Google Scholar 

  46. Ya. S. Lebedev, Appl. Magn. Res. 7, 339 (1994)

    Google Scholar 

  47. V.I. Krinichnyi, 2-mm Wave Band EPR Spectroscopy of Condensed Systems (Boca Raton, CRC Press, 1995)

    Google Scholar 

  48. O.Y. Grinberg, L.J. Berliner (eds.) Very High Frequency (VHF) ESR/EPR, vol. 22. Series Biological Magnetic Resonance (Kluwer Academic Plenum Publishers, 2004)

    Google Scholar 

  49. V.I. Krinichnyi, in Spectroscopy of Polymer Nanocomposites, ed. by D. Ponnamma, D. Rouxel, S. Thomas (Elsevier, 2015), p. 202

    Google Scholar 

  50. D.E. Budil, K.A. Earle, W.B. Lynch, J.H. Freed, in Advanced ESR: Application in Biology and Biochemistry, ed. by A.J. Hoff (Elsevier, Amsterdam, 1989)

    Google Scholar 

  51. J.H. Freed, Ann. Rev. Phys. Chem. 51, 655 (2000)

    Article  ADS  Google Scholar 

  52. D. Kivelson, J. Chem. Phys. 33, 1094 (1960)

    Article  ADS  Google Scholar 

  53. J.H. Freed, in Spin Labeling. Theory and Applications, vol. 1, ed. by L. Berliner (Academic Press, New York, 1976)

    Google Scholar 

  54. A. Polimeno, V. Barone, J.H. Freed, in Computational Spectrocopy, Chapter 12, ed. by V. Barone (Wiley, New York, NY, 2012)

    Google Scholar 

  55. S.K. Misra, J.H. Freed, Molecular motions, in Multifrequency Electron Paramagnetic Resonance, ed. by S.K Misra (Wiley-VCH, New York, 2011), p. 497

    Google Scholar 

  56. Z. Zhang, M.R. Fleissner, Z. Liang, D.S. Tipikin, K. Moscicki, K.A. Earle, W.L. Hubbell, J.H. Freed, J. Phys. Chem. B 114, 5503 (2010)

    Article  Google Scholar 

  57. Y. Sun, Z. Zhang, V.M. Grigoryants, W.K. Myers, F. Liu, K.A. Earle, J.H. Freed, C.P. Scholes, Biochemistry 51, 8530 (2012)

    Article  Google Scholar 

  58. M.D. Smigel, L.R. Dalton, J.S. Hyde, J.S. Dalton, Proc. Nat. Acad. Sci. USA 71, 1925 (1974)

    Article  ADS  Google Scholar 

  59. A. Kusumi, J.S. Hyde, Biochemistry 21, 5978 (1982)

    Article  Google Scholar 

  60. P. Fajer, D.D. Thomas, J.B. Feix, J.S. Hyde, Biophys. J. 50, 1195 (1986)

    Article  ADS  Google Scholar 

  61. E.J. Hustedt, A. Beth, Biophys. J. 86, 3940 (2004)

    Article  Google Scholar 

  62. A.H. Beth, Biophys. J. 103, 1109 (2012)

    Article  ADS  Google Scholar 

  63. G.G. Lazarev, Ya.S. Lebedev, Khimicheskaya Fizika 7, 1159 (1988)

    Google Scholar 

  64. G. Feher. Phys. Rev. 834 (1956)

    Google Scholar 

  65. J.S. Hyde, J. Chem. Phys. 43, 1806 (1965)

    Article  ADS  Google Scholar 

  66. H. Kurreck, B. Kirste, W. Lubitz, Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution (VCH Publishers, New York, 1988)

    Google Scholar 

  67. D.M. Murphy, R.D. Farley, Chem. Soc. Rev. 35, 249 (2006)

    Article  Google Scholar 

  68. C.E Tait,. P. Neuhaus, H.L. Anderson, C. R. Timmel, J. Am. Chem. Soc. 137, 6670 (2015)

    Google Scholar 

  69. B. Katterle, R.I. Gvozdev, N. Abudu, T. Ljones, K.K. Andersson, Biochem. J. 363, 677 (2002)

    Google Scholar 

  70. L. Kulik, W. Lubitz, Photosynth. Res. 102, 391 (2009)

    Article  Google Scholar 

  71. J.S. Hyde, J.C.W. Chien, J.H. Freed, J. Chem. Phys. 48, 4211 (1968)

    Article  ADS  Google Scholar 

  72. V.A. Benderskii, L.A. Blyumenfel’d, P.A. Stunzhas, E.A. Sokolov, Nature 220, 365 (1968)

    Article  ADS  Google Scholar 

  73. J.J. Yin, J.B. Feix, J.S. Hyde, Biophys. J. 52, 1031 (1987)

    Article  Google Scholar 

  74. L.D. Kispert, Biol. Magn. Res. (Biomedical EPR, Part B) 24, 165 (2005)

    Google Scholar 

  75. E. Reijerse, F. Lendzian, R. Isaacson, W. Lubitz, J. Magn. Res. 214, 237 (2012)

    Article  ADS  Google Scholar 

  76. A.L. Buchachenko, Chemical Nuclear and Electron Polarization (Nauka, Moscow, 1974). (in Russian)

    Google Scholar 

  77. R.W. Field, R.S. Bradford, D.O. Harris, H.P. Broida, J. Chem. Phys. 56, 4712–4714 (1972)

    Article  ADS  Google Scholar 

  78. O.A. Anisimov, V.M. Grigoryants, V.K. Molchanov, YuN Molin, Chem. Phys. Lett. 66, 265 (1979)

    Article  ADS  Google Scholar 

  79. K.M. Salikhov, Y. Sakaguchi, H. Hayashi, Chem. Phys. 220, 355 (1997)

    Article  ADS  Google Scholar 

  80. YuN Molin, O.A. Anisimov, V.M. Grigoryants, V.K. Molchanov, K.M. Salikhov, J. Phys. Chem. 84, 1853 (1980)

    Article  Google Scholar 

  81. E.L. Frankevich, S.I. Kubarev, Triplet State Optical Detection Magnetic Resonance Spectroscopy, ed. by R.H. Clarke (John Wiley & Sons, Inc., New York, 1982)

    Google Scholar 

  82. O.A. Anisimov, V.N. Verkhovlyuk, S.B. Zikirin, A.G. Matveeva, S.I. Trashkeev, Yu.N. Molin, Appl. Magn. Reson. 45, 881 (2014)

    Google Scholar 

  83. M. Vyushkova, P. Potashov, V. Borovkov, V. Bagryansky, Y.N. Molin, in Selectivity, Control, and Fine Tuning in High-Energy Chemistry, ed. by D.V. Stass, V.I. Feldman (2011), p. 191

    Google Scholar 

  84. A. Dreau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, V. Jacques, Phys. Rev. B: Condens. Matter Mater. Phys. 84, 195204/1 (2011)

    Google Scholar 

  85. E.L. Frankevich, A.I. Pristupa, V.I. Lesin, Chem. Phys. Lett. 54, 99 (1978)

    Article  ADS  Google Scholar 

  86. Masaharu Okazaki, Takesui Shiga, Product yield of magnetic-field-dependent photochemical reaction modulated by electron spin resonance. Nature 323, 240–243 (1986)

    Article  ADS  Google Scholar 

  87. T. Miura, A. Kageyama, S. Torii, H. Murai, J. Phys. Chem. B 114, 14550 (2010)

    Article  Google Scholar 

  88. C.J. Wedge, J.C.S. Lau, K.-A. Ferguson, S.A. Norman, P.J. Hore, C.R. Timmel, Phys. Chem. Chem. Phys. 15, 16043 (2013)

    Article  Google Scholar 

  89. S.N. Batchelor, K.A. McLauchlan, I.A. Shkrob, Time-resolved reaction yield detected magnetic resonance (RYDMR). Chem. Phys. Lett. 181, 327 (1991)

    Article  ADS  Google Scholar 

  90. C.A. Hamilton, J.P. Hewitt, K.A. McLauchlan, U.E Steiner, Mol. Phys. 65,423 (1988)

    Google Scholar 

  91. V.N. Verkhovlyuk, N.N. Lukzen, J.B. Pedersen, D.V. Stass, Y.N. Molin, Dokl. Phys. Chem. 417, 311 (2007)

    Article  Google Scholar 

  92. K.B. Henbest, E. Athanassiades, K. Maeda, I. Kuprov, P.J. Hore, C.R. Timmel, Molec. Phys. 104, 1789 (2006)

    Article  ADS  Google Scholar 

  93. V.N. Verkhovlyuk, N.N. Lukzen, J.B. Pedersen, D.V. Stass, Y.N. Molin, Dokl. Phys. Chem. 417, 311 (2007) (Pleiades Publishing, Ltd)

    Google Scholar 

  94. K.L. Ivanov, D.V. Stass, E.V. Kalneus, R. Kaptein, N.N. Lukzen, Appl. Magn. Reson. 44, 217 (2013)

    Article  Google Scholar 

  95. N.L. Lavrik, YuN Molin, Int. J. Quan. Chem. 40, 387 (1991)

    Article  Google Scholar 

  96. P.A. Potashov, L.N. Shchegoleva, N.A. Gritsan, V.A. Bagryansky, Y.N. Molin, J. Phys. Chem. A 116, 3110 (2012)

    Article  Google Scholar 

  97. V.A. Bagryansky, V.I. Borovkov, Y.N. Molin, Phys. Chem. Chem. Phys. 6, 924 (2004)

    Article  Google Scholar 

  98. M.E. Michel-Beyerle, H.W. Krüger, R. Haberkorn, H. Seidlitz, Chem. Phys. 42, 441 (1979)

    Article  ADS  Google Scholar 

  99. Y.N. Molin, Mendeleev Commun. 3, 85 (2004)

    Google Scholar 

  100. J. Klein, R. Voltz, Can. J. Chem. 55, 2103 (1977)

    Article  Google Scholar 

  101. O.A. Anisimov, V.L. Bizyaev, N.N. Lukzen, V.M. Grigoryants, YuN Molin, Chem. Phys. Lett. 101, 131 (1983)

    Article  ADS  Google Scholar 

  102. Y. Kitahama, Y. Sakaguchi, J. Phys. Chem. A 112, 176 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gertz Likhtenshtein .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Likhtenshtein, G. (2016). Experimental Methods of Investigation of Electron Spin Interactions Based on ESR Phenomena: Continuous Wave EPR Measurements. In: Electron Spin Interactions in Chemistry and Biology. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-33927-6_5

Download citation

Publish with us

Policies and ethics